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Critical Wall Perturbations: Scaling and Renormalization Group
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The influence at criticality of a "far" wall on the order parameter close to a "near"
wall as discussed by Fisher and de Gennes is recast in a form more suitable for micro-
scopic analysis. An argument beyond ordinary scaling is presented which yields the
perturbation exponent d* = d for longitudinal pertur bations and d ~~ = d —1 for trans-
verse perturbations. These results are consistent with explicit renormalization-group
computations to 0(p = 4-d) which involve solution of the nonlocal equation of state.
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The special theoretical challenges posed by
surface-related inhomogeneities at bulk critical-
ity include the necessity of simultaneously taking
into account the inherent nonlinearity of these
often sizable inhomogeneities, their nontrivial
effect on critical fluctuations, and the fact that
they give rise to a spatial variation in a system
with no bulk length scale. Renormalization-
group approaches have yielded a theoretical pic-
ture of the surface of a system at its bulk critical
point that, while not complete, has been sub-
stantially filled in.

It is also possible to consider surface effects
at criticality from a. phenomenological point of
view. In a short but seminal paper Fisher and
de Gennes' combined general scaling considera-
tions and a phenomenological free energy to ob-
tain information on the behavior near bounding
surfaces, and on the mutual influence of parallel
bounding surfaces, in a system at its bulk critical
point. While their particular focus was different,
the approach applies to effects in magnets, sim-

pie fluids, and other systems. Their results
point to possible experimental tests of surface
scaling at bulk criticality. "

The phenomenological free energy utilized by
Fisher and de Gennes' encompasses proper scal-
ing in the limit of a homogeneous system and in-
corporates the novel idea of a "floating" correla-
tion length, g(x). It yields, among other predic-
tions, a power law for the decay of surface per-
turbations into the bulk of a semi-infinite system
and a power law describing the mutual influence
of two well-separated plane parallel bounding sur-
faces. The former prediction is consistent with
general scaling arguments and has been borne
out by recent renormalization-group calculations. 4

The latter prediction will be the subject of this
note.

The quantity calculated by Fisher and de Gennes'
is the influence on a scalar order parameter pro-
file m(z) close to a, "near" wall at z = 0 of bound-

ary conditions at a "far" wall at z=D. For a«D,
the shift in m(z =a) —= m, due to the presence of
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m(z) ~(z+z, ) &' ""&~', (2)

with q the standard correlation-function exponent
and z, determined by the behavior of m(z) when z
is small. This result is significant. It tells us
not only that the asymptotic decay of m(z) is as

the far wall is described by

~m, /m, (D= )-D ',
at bulk criticality. The specific prediction for
the exponent d* arising from the phenomenolog-
ical approach of Fisher and de Gennes' is d* = 0,
the dimensionality of the system. This predic-
tion was later verified for the two-dimensional
Ising model by Au-Yang and Fisher. '

The exponent d* has some special interest be-
cause it does not follow from a general scaling
hypothesis for the free energy. One may suppose
that 4m, should vanish as a negative power of D,
but the exact power seems to require more de-
tailed information concerning the form of the free
energy. The free energy of Fisher and de Gennes'
supplies just such information, but it is afflicted
by acknowledged pathologies and is, in addition,
based on a local free-energy functional which, in
the light of our current understanding" of criti-
cal correlations in inhomogeneous systems, is an
inherently suspect form.

In this note we report the results of an investiga-
tion into the mutual influence of two bounding sur-
faces at bul'k criticality from a renormalization-
group point of view. We have found the following:

(1) The equality d*=d can be justified on the
basis of general arguments incorporating correla-
tion function scaling at the critical point. (2) Sim-
ilar arguments yield the equality d~* =d —1 where
d~* is the exponent describing the transverse ef-
fect of boundary conditions at the far wall on the
order parameter close to the near wall in an iso-
tropic n-vector system. (3) Both of these equali-
ties agree with the O(e) results of an explicit re-
normalization-group ealeulation in 4 —e dimen-
sions. ' This calculation, in contrast to those of
Fisher and de Gennes' and of Fisher and Au-
Yang, ' involves the solution of a nonlocal equation
of state for the order-parameter profile.

We begin by posing the problem of the mutual
influence of the two walls in terms of perturba-
tions of the pure power-law decay of the order
parameter in a semi-infinite critical system.
This power-law decay follows from general seal-
ing considerations and from explicit renormaliza-
tion-group analysis. ' When z is large enough in
a semi-infinite system, 4 we have

" "")~'but also that the term of next-to-lead-
ing order goes as z "'" '. The latter prediction
goes somewhat beyond the most elementary scal-
ing considerations and follows from the fact that
contributions to the equation of state, while non-
local, are sufficiently short ranged that surface
effects do not influence the corrections to asymp-
totic decay into the bulk.

When the system is not semi-infinite, the order
parameter will not be purely decaying. In fact,
we may expect a small correction near z =0 to
grow in relation to the decaying exponent and
ultimately cause the order parameter to switch
from decay to behavior that matches the boundary
conditions at z =D. If, for z«D, we write m(z)
=A.z +" ~ +6m, it is plausible that the con-
tribution to 6m that grows does so as a power so
that 5m ~Bz~ (where we have left out the correc-
tion decaying as z "'" '). The amplitude B
determines how far away from z = 0 the order-
parameter profile deviates significantly from
pure power-law decay. If this is to occur at z -D
then we must have BD -AD ~~ "")~'or

gg D-(d, -2+ q+2P) /2

The quantity Ba~ represents the perturbing effect
of the surf ace at z = D on the order -parameter
profile at z =a. The result (3) along with Eq. (1)
clearly implies

d* = (d —2+ q+ 2p)/2.

The value of d* is controlled by p.
This latter exponent can be obtained from the

equation of state for the order parameter which
is of the generic form 5E/Om(x) =0, where I is
the free energy' expressed in terms of the order
parameter m(x). This equation of state predicts
the leading-order power-law decay of m(z). Sup-
pose that we write m(z) =M,(z) +M, (z), where
M, (z) is the order-parameter profile in a semi-
infinite system and M, represents the small per-
turbation associated with a finite D. The equa-
tion of state, expanded to first order in M, (z),
takes the form (for z«D)

fZ(z, z )M, (z )dz = 0, (5)

where Z(z, z') is the second functional derivative
[PE/5m(z) 5m(z ') ] ~,. Neglecting effects asso-
ciated with surface scaling, ' we expect this equa-
tion to admit of two solutions, one growing and
the other decaying as a power of z. The decaying
solution goes as z " ' " ', according to the argu-
ments above, " and the growing one goes as z~.

The quantity Z(z, z ) has additional significance.
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and hence for g(z, z')

g(z, z') -z' "f(z/z'). (8)

As remarked, g= Z ' and so g(z, z ') satisfies an
equation similar to (5) with g in place of M, .
Now, if z'»z, we expect g(z, z') to go to zero.
At criticality we should have power-law decay
g(z, z')-z' ' as z'-~. Furthermore, g(z, z')

z as z Oq or

z, z' -z' 'z~, z'»z.
The powers p and q are determined by Eq. (5)
with M, (z) =z~ or z '. This tells us that q =(d
+ q)/2 and that p is the power in which we are
interested. Referring back to the scaling form
(8) we see that p and q must also satisfy

p —1+q=q= —'(d+q), (10)

or p =(d+2 —q)/2. " Inserting this result into (3)
we obtain

d*=-,'(d+2 —q)+-,'(d-2+q) =d,

and the desired equality results.
We can define a 0j* in the same way by asking

for the transverse effect on the vector order pa-
I

As the second functional derivative of the free
energy with respect to the order parameter it is
also the inverse of the kernel describing the stat-
ic linear response of the semi-infinite system to
an ordering field varying in the z direction only.
Because of the connection between fluctuations
and linear response Z(z, z') is also the inverse
of g(z, z'), the following integral of the two-point
correlation function, G(x, x '):

g(z, z') = JG(x, x')d" 'p [x=(z, p)]. (6)

Scaling of correlations at criticality can be ap-
plied, conjecturally, to the inhomogeneous sys-
tem of interest here. " These considerations
yield for G(x, x')

rameter m(z) near z = 0 induced by boundary con-
ditions at z =D that require m(z) to rotate. If we
assume an isotropic n-vector model the argu-
ments proceed straightforwardly. The scaling
arguments for the correlation function ought to
go through as before; we may assume no essen-
tial distinction between transverse and longitudi-
nal correlations at criticality, even though there
is a nonzero M,(z). The connection between the
kernel in the expanded equation of state and the
inverse of the integrated transverse correlation
function is the same as in the longitudinal case.
The only difference between the two cases lies
in the power law of the decaying correction to
the dominant semi-infinite decay z ' ""i~'. To
obtain a small transverse correction we simply
perform a small uniform rotation on m(z). This
yields a transverse perturbation decaying with

the same power law. Thus qi=(d-2+q)/2, so
that, by the correlation-function scaling argu-
ment, the power pi for a, small growing trans-
verse correction is given by

p~=qi+1- g=(d —2+ q)/2+1 —g=(d —rj)/2,

and

di* = qi+p i = —,'(d —2 + r)) + —,'(d —q) = d —1. (12)

While the arguments above are all highly plausi-
ble, they rely on some assumptions concerning
the behavior of correlation functions at the criti-
cal point when there is surface order. ""We

have checked the value of d* and d~* by perform-
ing O(e) calculations in the field-theoretical re-
normalization group and find that d* =a and d*
=d —I to order a=4 —d. The details of the ex-
plicit calculation are sketched in the following.

We seek the growth of longitudinal and trans-
verse corrections to the pure power-law decay

" ""~' in the isotropic n-vector model. When

n =1 this reduces to the Ising model, and so the
calculation refers to scalar order parameters
as well. In this single-loop calculation the longi-
tudinal kernel Zi (z, z') is given at order e by

Zg(z, z ') = &(z -z ')[-d'/dz' + 12u*M,(z)'z ' + 12u*Gi(')(x, x) + 4u*(n —1)Gr~')(x x) ]

(13)

~ sence of
M,(z). The term S refers to subtractions that
remove divergences from the integral and ac-
count for contributions to renormalized quanti-
ties. Similar subtractions have been made from
Gi&~)''(x, x). The leading-order solution M, (z)

S„g(z, z') = JG (x, x')Gg(x, x')d' 'p'-S,

o., /=I. , T,

where G«~~ is the "bare" longitudinal (trans-

(14)
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-288 u*'Sii(z, z ')M, (z)M, (z ') —32(n —1)u*2S~r(z, z ')M, (z)+(z ') .
The transverse kernel, Z r(z, z'), is given by an
analogous expression. S„z(z,z') is given by verse) correlation function in the e
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decays as z ' ') '-z (' "") '' The quantity
u* in (13) is the fixed-point value of the renormal-
ized four-spin coupling, and controls the mag-
nitude of M, (z) for fixed z, which enters in an
important way in Eqs. (13) and (14).

Equation (13) (and the analog for Zr) differ
from those derivable from the free energy of
Fisher and de Gennes' in that they are nonlocal.
Nevertheless the solutions M~(r)(z) of the equa-
tion fZ~(r)(z, z')M~(r) (z ')dz'= 0 are

M, (z) -z' 'S' (15)

which yields d*=4 —~=d and dj*=3 —e=d —1.
In summary, we have recast the question of

mutual influence of a "far" wall on the behavior
of the order parameter in the vicinity of a "near"
wall in a form more suitable for microscopic
analysis. An argument beyond ordinary scaling
and utilizing features of the semi-infinite sys-
tem obtained in Ref. 4 has been presented which
yields the wall perturbation power (as introduced

by Fisher and de Gennes') d*=d for longitudinal.

perturbations and d~* =d —1 for transverse ones."
These results are shown to be consistent with an
explicit renormalization-group calculation to O(e)
which involves solution of the nonlocal equation
of state.

We conclude by noting that the Fisher -de Gennes
functional' is an uncommonly good local approxi-
mation to the nonlocal equation of state. There
are known difficulties with the local functional
such as when boundary conditions require that
the order parameter variish within the sample.
Further, the functional cannot give surface expo-
nents in the appropriate regime and cannot give
logarithms in d =4. Nonetheless the asymptotic
decay z " ""'~ is given correctly as is the re-
lation d*=d. This is nontrival since other local
equations of state will satisfy the former but not
the latter. For experimental interpretations the
Fisher-de Gennes functional, perhaps patched
up to include the surface exponent regime, would

seem an ideal starting point. Detailed questions
would of course have to be answered within the
framework of the nonlocal equation of state.
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