VOLUME 49, NUMBER 21

22 November 1982

Bayman et al. Respond: The main point made in the first part of Ref. 1 was that the relatively large sizes of Li, Be, and B nuclei make it unlikely that their mean free paths, λ , in emulsion could be inferred from systematics based on more compact nuclei, such as ⁴He and nuclei with $Z \ge 8$. To illustrate this point, we gave simple arguments, mainly geometrical in nature. Di-Giacomo is correct in stating that a more accurate calculation would involve not only nuclear sizes, but also nucleon number densities. We have, in fact, recently performed such calculations (similar to those of Karol² and DeVries and Peng³) employing the best available experimental and theoretical information regarding density distributions of all the nuclei concerned.

Some relevant results are presented in Table I. We list the values of ξ , defined by

 $\xi \equiv \lambda(Z,A)/\lambda(^{4}\text{He}).$

For comparison, ξ values calculated from the empirical formula of Ref. 4 are also given. This formula provides a logarithmic interpolation between Z = 2 and $Z \ge 6$. Significant differences occur only in the cases of Li and Be. For these nuclei, our calculated values of ξ are appreciably lower than the interpolated ones. Measurements are available for ⁶Li (Heckman and Judek⁵) and yield a ξ value close to 0.7, in agreement with our calculated value.

We conclude that this calculation, which incorporates the nucleon-nucleon interaction effects emphasized by DiGiacomo, supports the contention of Ref. 1 that the logarithmic interpolation cannot be relied upon to predict λ for light primary projectiles. If we use our calculated λ for primary Li and Be, the discrepancy between primary and secondary values is decreased. It

Projectile	From Karol ^a – type calculation	From logarithmic interpolation ^b
⁴ He	1.0	1.0
⁶ Li	0.72	0.84
${}^{9}\mathrm{Be}$	0.63	0.74
^{11}B	0.64	0.67
^{12}C	0.61	0.62
14 N	0.59	0.58
¹⁶ O	0.54	0.54
^{32}S	0.41	0.40
⁴⁰ Ca	0.38	0.36
56 Fe	0.33	0.32
^a Ref. 2.	^b Ref. 4.	

TABLE I Calculated and interpolated values of a

seems clear that further experimental data are required to decide whether or not there is in fact a significant difference.

B. F. Bayman

P. J. Ellis

S. Fricke

Y. C. Tang

School of Physics and Astronomy University of Minnesota Minneapolis, Minnesota 55455

Received 12 October 1982 PACS numbers: 25.70.Ba, 21.10.Ft, 25.70.Hi

¹B. F. Bayman, P. J. Ellis, and Y. C. Tang, Phys. Rev. Lett. 49, 532 (1982).

²P. J. Karol, Phys. Rev. C 11, 1203 (1975).

³R. M. DeVries and J. C. Peng, Phys. Rev. C <u>22</u>, 1055 (1980).

- ⁴E. M. Friedlander, R. W. Gimpel, H. H. Heckman,
- Y. J. Karant, B. Judek, and E. Ganssauge, Phys. Rev.

Lett. 45, 1084 (1980).

⁵H. H. Heckman and B. Judek, private communication.

ERRATUM

TRANSVERSE ELECTROMAGNETIC WAVES WITH FINITE ENERGY, ACTION, AND $\int \vec{\mathbf{E}} \cdot \vec{\mathbf{B}} d^4x$. Avinash Khare and Trilochan Pradhan [Phys. Rev. Lett. 49, 1227 (1982)].

It was claimed in our paper that the condition

for $\vec{E} \parallel \vec{B}$, i.e., Eq. (9), is satisfied for our choice of \vec{a} , \vec{b} which unfortunately is not the case. However, although $\vec{E}(t)$ is not parallel to $\vec{B}(t)$, $\vec{E}(t=0)$ $\parallel \vec{B}(t=0)$ and $\int d^3x \vec{E}(t) \times \vec{B}(t) = 0$. All other conclusions of our paper remain valid in spite of the error.

© 1982 The American Physical Society