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Comment on "Magnetic Flux, Angular
Momentum, and Statistics"

Wilczek' considers a particle of charge q' in a
circular orbit of radius p outside a line of mag-
netic flux 4' on the & axis. To show that the
kinetic angular momentum l, is quantized as n
—qc'/2&, where n is an integer, he considers
three methods. In the third method he makes a

singular gauge transformation" to eliminate the
vector potential outside the & axis which imposes
the new boundary condition p'(p+») = exp(- it@')
xg'(y) on the wave function. It is this new boun-

dary condition that gives the correct value for
the kinetic angular momentum.

The purpose of this Comment is to draw the dis-
tinction between a change of representation of the
operators that preserves the canonical commuta-
tion relations' and a gauge transformation. ' In
classical electrodynamics a gauge transf ormation
on the potentials cannot change the electromag-
netic field. In the problem considered by Wilczek
the magnetic B is nonzero only on the & axis,

B=C5( )o(~) . (l)

A vector potential which gives this B is

A =y4/2vp, (2)

where p is a unit vector in the direction of the
azimuthal angle p. The singular gauge function
used by Wilczek' is & =C'P/2& so that && = P~'/
2&p. Therefore the new vector potential is A'

=A —V A =0 everywhere, and the new magnetic
field is B' =& ~A' =0 everywhere. The magnetic
field has been changed, so A =4 p/2~ is not a
valid gauge function.

Qn the other hand, the representation of the
canonical momentum operator and wave function
can be changed, which preserves the canonical
commutation relations. " The Hilbert space for
this problem is the set of quadratically integra-
ble functions L'(S) on S =f(p, p, z)~ p =a) 0, p
E'[0,2~), z =0}, where a is the radius of the orbit
of the electron. The standard representation of
the canonical angular momentum operator P~
=- ie/ap can be changed by a unitary transforma-
tion to

p ~' = exp(- ~l')p ~exp(&l') =p ~+ el'/eW,

if the wave function is also changed to

P' = exp(- il')g,

where I is defined on S.
The kinetic angular momentum &, =p ~

—g& ~,
where& ~ =pp ~ A, is the gauge-invariant opera-
tor corresponding to the observable angular mo-
mentum. If

I' =icy/2v on S, (5)

g„'(y) = (2~) "'exp[i(n —q4/2tr)cp],

where n is an integer. The eigenvalue of the
kinetic angular momentum in Eq. (6) is thus n
—&C'/», the same as obtained by Wilczek. '
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then the new kinetic angular momentum operator
on I-'(S) is

l, ' =p ~' —qA ~ =p ~,

by Eqs. (2), (3), and (5). The new kinetic angular
momentum is the old canonical angular momen-
tum. The magnetic field and the vector potential
are still given by Eqs. (1) and (2), respectively,
so the electrodynamics has not been changed.
The wave function g' satisfies the free-field
Schrodinger equation, but with the boundary con-
dition

0'(2~) = exp(- ~«')0'(0),

since P'(0) =P(0) from Eqs. (4) and (5).
The eigenfunction of the new kinetic angular

momentum operator in Eq. (6) which satisfies
the boundary condition in Eq. (7) is
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