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Recent angle-resolved measurements for CO on
Ni(ill) confirm the data shown in Figs. 2(a) and 3(a).
The observed angular dependence is as expected from
polarization selection rules for the 2'* orbital of a
CO molecule bound normal to the surface [F.J. Himp-
sel and Th. Fauster, Phys. Rev. B 26, 2679 (19&2)].
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Free-atom-to-metal shifts of the rare-earth 2p, M, 4f, and 5s core-level binding
energies have been calculated. For Pr —Sm and Tb—Tm, elements which undergo a va-
lence change on formation of the solid, the shifts are smaller and depend significantly
on the nl core-state quantum numbers. Consequently, a unique shift characterizing all
core levels of a given element cannot be assumed when a configuration change involving
the 4f states occurs on solid formation.

PACS numbers: 71.50.+t, 79.60.Cn

Core-level binding energies determined by
probes such as x-ray photoemission spectroscopy
continue to provide valuable information regard-
ing electronic structure. One focus of substantial
effort is the binding-energy shif t between the
free-atom state and the metallic pha, se (see, e.g. ,
Refs. 1-6). This paper reports the first direct
calculations of such shifts for all the lanthanide
elements; moreover, four different core states,
the 2p, 3d, 4f, and 5s, are considered. The
valence (or 4f occupancy) change accompanying
solid formation is found to produce significant
quantitative differences among the shifts calcu-
lated for Pr-Sm and Tb-Tm. In particular, the

5s shifts exceed those of the more spatially local-
ized states by as much as 5 eV.

The atom-metal shift 6E~(nl) of a. level having
quantum numbers n. i is here defined by

5E,(nl) =-E,a™(n/)- n (nl),

where Es"' (nl) and 6 (nl) denote the free-atom
and metal binding energies relative to the vacuum
zero and the Fermi energy ~F, respectively.
This definition is useful because binding energies
are generally measured with respect to the same
reference levels. Each E~ "' (nl ) is derived
from a difference of relativistic Hartree-Fock
(RHF) total energies:

E,"'-(nl ) = E,.„'"'((nl hole)4f "(5d, 6s)")—E„. '(4f "(5d, 6s)") . (2)

For Pr-Sm and Tb-Tm the atomic 4f occupancy k, and valence q, differ from their metallic counter-
parts, as Table I indicates. Multiplet theory serves to place the 4f, 5d, and 6s electrons into the ap-
propriate ground states for both initial and final configurations, while multiplet interactions between
the nl hole (nl = 2p, 3d, 5s) and the open 4f and 5d shells in the ionic final state are not included.

6 (nl) is also specified by a total-energy difference:

6 (nl) =—E~„i " ((nl hole)4f ~(5d, 6s)'m") —. E~«, i (4f™(5d,6s)'I) .
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