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Semi-infinite systems which undergo a first-order bulk transition are considered. A
new type of surface phase transition is predicted which has two unexpected features: (1)
Et exhibits some universal properties since a variety of surface exponents can be defined
although there are no bulk exponents; (2) a layer of the disordered phase appears between
the free surface and the ordered bulk. The interface between the disordered and the or-
dered phases becomes delocalized as in the wetting and in the pinning transition.

PACS numbers: 68.40.+c, 05.70.Fh, 64.10.+h

Critical behavior at surfaces has been the sub-
ject of much recent interest. ' "

Up to now, both
theory and experiments have been devoted to
semi-infinite systems which undergo a second-
order bulk transition. In this case, the bulk or-
der parameter is proportional to I & -&, l as the
critical temperature T =T, is approached from
below while the surface order parameter behaves
as IT —T, l

' withe, &P. This surface critical
exponent has been calculated by various methods
for the Ising model, ~ ' for the n-vector model, ' '
and for the two-dimensional g-state Potts-model
with q =3,4.' The exponent P, has been measured
for the antiferromagnet NiO by low-energy elec-
tron diffraction (LEED)" and for the ferromag-
net Ni by spin-polarized LEED." In this Letter,
we consider semi-infinite systems which undergo
a first-order bulk transition. As a consequence,
the bulk order parameter jumps at the transition
temperature 1' =&*. However, it is shown below
that the surface order Parameter may neverthe

less behave continuously like I T —T*l j. A varj. e-
ty of surface exponents can be defined which are
expected to be universal. This is rather surpris-
ing since there are no corresponding bulk expo-
nents. This new type of surface phase transition
has an additional unexpected feature: as &* is ap-
proached from below, a layer of the disordered
phase intervenes between the free su~face and the
ordered bulk. Thus, an interface appears which
separates the disordered surface layer from the
ordered phase in the bulk. At T =&*, this inter-
face becomes delocalized as in the wetting"'"'"
and in the pinning transition. "" This implies
a disordered surface layer of macroscopic thick-
ness.

Consider a d -dimensional semi-infinite system
with a (d —1)-dimensional free surface. The co-
ordinate perpendicular to the surface is denoted

by &. As a result of the broken translational in-
variance, the order parameter M depends on ~:
M=M(z). The Landau expansion for the free en-
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fi(M) =-HiM + gaia, M

up to second order. This form for f, (M) has been
widely used in t.he context of the semi-infinite
Ising model. ' '6 H, is an effective surface field
and 1//i, is the so-called extrapolation length
which is assumed to be independent of tempera-
ture. In the following, a, is taken to be positive.
In addition, only infinitesimal symmetry breaking
fields H, H, -0 will be considered. " In this case,
both the bulk and the surface are disordered for
T )T*. For an Ising ferromagnet, the corre-
sponding transition is usually called the ordinary
transition.

From 0F/&M =0, one obtains the differential
equation

dM/dz =[2f(M) —2f(M, )]"', (4)

where M& is the bulk order parameter, together

ergy (per unit area) has the generic form

E iM) = J d&[pi(dM/dz) 2+f+) +&(&)fi(M)]. (1)

For a system with a bulk tricritical point, the
bulk termf(M) is given by the well-known expres-
sion

f(M) =-HM+ ~ia(&)M'+ ~i''+ ~iiM6

with»0. The bulk order parameter follows
from &f/&M =0. For M )0 or u =0 in (2), the bulk
transition is critical and tricritical, respectively.
The corresponding semi-infinite systems have al-
ready been discussed in the literature. " Here,
we are concerned with u &0 which leads to a first-
order bulk transition at a =a* =Bu'/16 U for H =0. .

The temperature deviation & —1'* is proportional
to a -a*. At T =1'*, the bulk order parameter
jumps by the amount (3 lu I/40)."'

In the Landau free energy (1) the additional
term &(&)f,(M) mimics the microscopic changes
of the interaction parameters near the free sur-
face. If f, (M) is expanded in powers of M, one
obtains

const ~

/4

T ~ l~/2

a ((a*)"'
(g g)1/2

) (g g)1/2
(6)

Thus, two different types of ordinary transitions
are obtained, denoted by 0, and 0, in Fig. 1.
These transitions are separated by the multicrit-
ical point s as shown in Fig. 1. At the ordinary
transition o„ the surface order parameter ~, is
discontinuous just like the bulk order parameter

However, at the ordinary transition 0, and

at the multicritical point s, ~&, goes continuously
to zero with the surface exponent

(0,),
(s).

(Note that Landau theory yields P, =1 in the case
of an Ising ferromagnet. ") This behavior of M,
is possible since the order-parameter profile
M(&) develops an intrinsic structure as shown
schematically in Fig. 2. There is an interface at
& =~ which separates a surface layer of the disor-
dered phase from the ordered phase in the bulk.
As T —T*—0, this interface becomes delocalized
since

&~ llnM, l~llnlT -T*ll.
Within Landau theory, such a logarithmic diver-
gence has also been found in the wetting" and in
the pinning transition. This interf a,ce delocaliza-
tion is due to the possible coexistence of several
bulk phases. In the case of the wetting and of the
pinning transition, one has coexistence of two
ordered phases while in the phase transition con-
sidered here the disordered phase coexists with
one of the ordered phases.

with the implicit equation

'
) =2/P, ) —2/P )

1

for M, =M(& =0) which must be solved in the inter-
val [0,/&~]. From (5), one finds the temperature
dependence of ~, for H =H, =0 as & —1'*—0:

w(z)

(01) (QP)
T

(s)
I

I

Wa

FIG. 1. Phase diagram for II= g, = 0.

0
0

FIG. 2. Order-parameter profile M{@)as 02 and s
are approached from T (T ~.
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M, =—M(z =0) is a local quantity. We may also
define a global excess quantity M, by analogy with
the surface magnetization of the semi-infinite
Ising model. "Within Landau theory,

M, =f dzIM~-M(z)]. (9)

As a result of the diverging length scale & at 0,
and &q

M, ~
I lnI r —r*II (10)

at these transitions. Thus, the surface exponent

P, =O at 0, and s. The zero-field susceptibilities
X» y, » and y, also display power-law behavior
at 0, ands:

~Ir-r*I »BiVl

&H 7

0

~Ir-r+I »~BM
F 1

1 0

BM,
BH t

0

with y1=r~ y1.1=0, and y, =l at the transition 0,.
At s, I obtainy, = 4, y11 p, andy, =1. Both at
0, and at s, these surface exponents satisfy the
scaling relation

2y -y -y =o. (12)

The same relation holds for the corresponding
surface critical exponents of the semi-infinite
Ising model' and of the n-vector model. '

If M(z) is inserted into the Landau free energy
(1), one obtains the surface free energy

f, =f, (M, ) + I dz(dM/dz) . (13)

For T —T*-0 and H =H, =0, this quantity has a
singular part. To leading order,

(o„s).
As a consequence, the singular part of the surface
specific heat &, ~d f, /dr' behaves like

with

n, =1 (02,s).
It is shown in a forthcoming paper" that the singu-
lar part of the surface free energy may be put
into a scaling form where two independent surface
exponents enter. This scaling form implies
scaling relations such as (12) for the various sur-
face exponents defined above. Some of these rela-
tions are identical with and some are different
from the corresponding relations of the semi-in-

finite Ising model.
I now discuss the effect of higher-order terms

in the expression for f, (M). An appropriate gen-
eralization of the polynomial (3) is

f,gf) = —HPI + ~a,M +7u,M4+&v,M6. (17)

fpS) =-mS+~a(r)M' ~uP ~7'&M~ (18)

with &,»0 which arises, for example, in the
Landau theory of the p-state Potts model. For
(d, g) = (3,3), the discontinuous nature of the bulk
transition is now well established. "" From (18)
and an expansion of f, Pf) up to fourth order in M,
one may derive all previous results for the ordi-
nary transition 0,. Depending on the value of the
Landau coefficients in f, (M), either a multicriti-
cal point s as in Fig. 1 or a short phase boundary
extending into the low-temperature regime is
found. At s, some surface exponents are altered:
as a result of the cubic term in (18), P, =~, P,

y, = 1, and &, = 1~ The scaling
relation (12) is again satisfied.

As the temperature & is varied, the physical
trajectory of a real sample is given by a straight
line parallel to the T axis in the phase diagram
of Fig. 1. Thus, in order to decide whether the
new ordinary transition 0, may occur one has to
estimate the magnitude of the inverse extrapola-
tion length a, in terms of microscopic interaction
parameters. As a first step towards this goal,
the semi-infinite q'-state Potts model on a lattice
has been investigated by mean-field theory. For
rZ- ~, this can be done analytically. ' For finite
p, a nonlinear dynamics" approach has been
used" similar to the method described by Pandit
and Wortis. " Although the phase diagram of the
lattice model is more complex the new ordinary
transition 0, is recovered. For (d, q) =(3,3), the
transition 0, occurs for &1 1 1& where ~, is

with U, & 0. Two cases have to be distinguished.
If the Landau coefficient u, & —l u I /4 (a *)"', all
results derived above remain unchanged. If ~,
& —lu I/4(a")"', the phase diagram depicted in
Fig. 1 is slightly changed. Instead of the multicri-
tical point &, a short phase boundary extends into
the low-temperature regime with T & 1'*. Across
the additional phase boundary, ~, is discontinu-
ous while I& is analytic. However, at the transi-
tion O„all scaling properties are unaffected by
the above generalization of f, (M).

The features of 0, are also independent of the
specific form for the bulk term f(M) in (1). All
that is required is a fir st- order bulk transition.
Instead of the polynomial (2), we may consider
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the coupling constant for two Potts spins in the
surface and ~ is the coupling constant for two
Potts spins in the bulk. It seems likely that the
interaction parameters of real samples fulfill
this inequality. In this case, modern experimen-
tal techniques like LEED,"spin-polarized LEED,"
or Mossbauer spectroscopy" which probe the
surface locally may reveal the power-law behav-
ior (6) for materials which undergo a discontinu-
ous bulk transition.

The results reported above have been obtained
in the framework of Landau theory which under-
estimates the effect of fluctuations. There are
no critical fluctuations at the phase transitions
considered here since the bulk correlation length
stays finite at T =&* but there are fluctuations of
the interface, i.e., capillary waves, which should
be taken into account. Such interface fluctuations
have been studied in the context of the pinning
transition where they lead to an interface which
becomes not only delocalized but also rough. ""
As a consequence, the logarithmic divergence of
I obtained from Landau theory [compare (8)] is
changed to a power-law divergence. ""In the
present context, these interface fluctuations also
make the various power laws for ~„~„etc.,
more singular as preliminary calculations for the
solid-on-solid model indicate. These effects will
be discussed in a forthcoming publication. "

I am indebted to H. Wagner for encouragement
and stimulating discussions. I also thank D. M.
Kroll and H. W. Diehl for useful comments.
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