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This may be seen from the equivalence of our re-
sults with those given by L. G. Fishbone, Astrophys.
J. 185, 43 (1973).

'For an equatorial circular orbit in a Kerr space-
time, K=K + y, K g, where y, = (1-3p+2p
x (1~fdt) 3~ p) p. Hence g+& 0 for all circular orbits and
diverges as the null orbit is approached. It is interest-
ing to note that y, = —,'- at the last stable circular orbit.

See Ref. 4. Van Patten and Everitt have proposed an
experiment to measure the effect of the dragging of
inertial frames: R. A. Van Patten and C. W. F. Everitt,
Phys. Rev. Lett. 36, 629 (1976), and Celest. Mech. 13,
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"As a reminder of this fact a bar is placed over in-
dices referring to these tetrads. The nonzero compo-
nents of A&&~~ and Ag~l" are given by [A&-, ~"=n, xA&&~
= 0!pp 0!A(g)

xA& -~&= ~g 3/2q[cot(a T} —csc(rug) cos(~pT)],

'vA (g) + = & @
3

g [csc((dp) sin(&pT) —P] &

where p = y(G. —~IJ)n ). The components of A&-~" may
be determined from the orthonormality conditions. It
is important to note that the rotation of the platform by
frequency uo only helps simplify the final result and is
not the cause of the main effects considered in this
paper.

' The angular momentum of the source has been taken
into account only to first order: therefore, the linear
-results may break down for z ~Q '.

"To ensure this, a sufficiently drag-free laboratory
system is necessary just as in the gyroscope experi-
ment.

'4It should be pointed out that our results differ from
those of Ref. 7 in. several important respects: (i) The
Schwarzschild effect is not mentioned in Ref. 7, (ii) the
amplitude of the rotation-dependent effect is not given
correctly since the secular term is absent, and (iii)
the opposite conclusion is implied regarding the ques-
tion of measurability of the relativistic effects.
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A quantum mechanical particle which moves in a symmetric double-well potential, and

whose interaction with the environment is described in the classical regime by a phe-
nomenological friction coefficient g, is considered. It is shown that, provided gqp /h ex-
ceeds a critical value of order unity (+q p are the locations of the potential minima}, the
mean rate of tunneling between the degenerate minima decreases with temperature, lead-
ing at T = 0 to spontaneous symmetry breaking.

PACS numbers: 05.30.-d, 03.65.Bz, 73.40.Gk

There has been recent interest" in the influence of dissipation on quantum tunneling out of a meta-
stable state. Here we consider the related problem of quantum coherence. Specifically we consider a
particle of mass 34 moving in a symmetric double-well potential V(q) = V(-q) which has minima at q

=+q, and a local maximum at q= 0, and whose classical equation of motion is Mq+qq = —dV/dq+F, ~ (t).
We limit our considerations to temperatures small compared to the frequency ~, = [1&1 'V "(q,)]'~' of

small oscillations around one of the minima: kB T «@&„ the limit in which thermal activation over the

barrier can be neglected compared with quantum tunneling. Further, in the limit hv, «b, V= V(0) —V(q),
one can truncate to the lowest two states g, ,(, with energies E, ,E, , respectively. If the system is
prepared at T = 0 and time t = 0 in the state g~ = (g, +(, )/v 2 representing a wave packet localized in the
left-hand well, the amplitude for being in the left-hand well at time t oscillates with frequency b, ,/0
=(E. -E, )/5. This is the phenomenon of "quantum coherence. " At finite temperatures this oscillation
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is reflected in the correlation function (with P =1/hf)T)

(q(t)q(0)) =q, '(eos(&,t/h) —i sin(&, t/h)tanh( —,'pa, )f.
In this Letter we consider the effect of dissipation on quantum coherence. Our calculations are re-

stricted to the regime where qq, /h exceeds a critical. value of order unity, while for computational
simplicity we take g sufficiently small that the classical motion about one of the minima is lightly
damped (q «M(d, ), although the latter is not a fundamental. limitation. The principal. conclusions are
as follows:

(i) At T = 0 there is spontaneous symmetry breaking, and a twofold degenerate ground state, provided
qq, '/h exceeds a critical value of order unity. As 7i increases there is a "phase transition" from a
"disordered" ((q) =0) to an "ordered" ((q)40) phase which is in the same universality class as the one-
dimensional. Ising model with inverse-square-law interactions.

(ii) With decreasing temperature the tunneling between the two degenerate minima slows down in
anticipation of the zero-temperature transition. On the basis of a simple approximate cal.cul. ation com-
bined with a renormalization-group (BG) treatment we predict that the mean tunneling rate is given ap-
proximately by

f f (T )/h = (pA, '/4fjq, )(h)) T/h&q), ) (2)

where y = 4qq, '/wh for qqo'/@» 1, but depends on 6, in general.
(iii) There is a complete loss of phase coherence. ' The system continues to tunnel, but in a random

(rather than "clocklike") manner.
Following Caldeira and Leggett, ' the dissipative interaction of the system with the environment is

modeled by a linear coupling to a set of harmonic oscillators. The Hamil. tonian is

II = ,Mq'+ V—(q)+-,Q m„x„'+—,Q „m~„' x'+qQc„x+q+c '/2m (q)„'.

The final term in Eq. (3) has been included so that there is no shift in the bare potential. V(q) due to the
coupling, which merely serves (if the spectrum of oscillator frequencies is appropriately chosen) to
introduce a dissipative term in the classical equation of motion for q. This point has been the subject
of some recent discussion. The partition function can be obtained by the Feynman path-integral
method' as a functional integral over functions q(s), (x (s)f defined in imaginary time, 0-s (P,

Z = Dq(s) s„Ds„(s)expI— ds, —+t/" q +

(4)
C 2

+-,'Qm (u„'x„'+qgc„x„+q'Q
n 0. 2~+~+

with periodic boundary conditions q(s+P) =q(s), x (s+P) =x (s). The functions q(s), (x (s)) may be ex-
pressed as Fourier series, q(s) =Q„= „q„exp(i(q)„s), etc. , where ~„=27m/P.

The oscillator degrees of freedom are integrated out to leave, up to a mul. tiplicative constant the
partition function of the oscillators),

Z = Dq(s) expI — ds —s V(q) —)lg e(e)q„q
n

where

c„' (u„' "d(u, l((u)(u '
+ 2m„(u '[((o„/h)'+ u)„'] ffh', ((u„/@)'+ ~' '

For the classical. motion to be determined by a, well-defined friction coefficient q, we must have J(u)
=geo, giving

~(n) = nl ~„I/2@.

Substituting (6) into (5), and retransforming the final term to imaginary ti.me, gives the final result

(5)
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[equivalent to Eq. (10) of Ref. 1]

Z= J Dq(s) exp[-S ff(q(s)] ],

ds, —+ V(q) +
0 2A ds

ds [q(s) —q(s')]'
Sln 7T S —S

ln the absence of dissipation, and at T =0, the tunneling frequency can be obtained by standard "in-
stanton" methods, ' via a calculation of the loca!, minimum of the functional S,«/q(s)] in function space.
For g =0, an extremum of S,ff satisfies

(I/h')d'q/ds' = d V/dq

which is a classical equation of motion corresponding to the inverted potential V(q) = —V(q). For the
nontrivial "kink" (or "instanton") solution the particle falls off its unstable potential. maximum at q
= —q, and reaches q =+q, as s —~. For the corresponding "antikink" solution the particle starts at q
=+q, and finishes at q = —q, . If S, is the value of S,fq corresponding to a single kink (or antikink), the
kink contribution to the partition function can be written as'

where

dS2
T

2n ds
~ Q ~

7
2 ds~' exp(-2nS, ) = Q [(P/w)'" /(2n)! ] exp(- 2nS, ) = cosh(2', ),

n=O
(8)

b, ,= (2/w)exp(- S,).

&q„q „& = &q. q .&. —(Pn/2h)Z I ~.l(&q. q .q.q-.&. —&q. q .&.&q.q .&g-,
.n

where &. . .&, indicates a thermal average in the noninteracting (q=0) theory. Such averages are most
readily carried out in imaginary time:

(10)

In Eqs. (8) and (9), T-( hm, )
' is the kink "width" (P/v»1), and from (8) we deduce that 6, is the ener-

gy splitting of the lowest two states so that the frequency of tunneling between the two minima of V(q)
is just b, ,/h.

For the case q = 0 discussed above, the kinks and antikinks form a noninteracting gas. The effect of
dissipation is to introduce kink-kink interactions via the final term in Eq. (7). For a preliminary anal-
ysis we treat this term perturbatively. Working in Fourier space, using Eqs. (5) and (6), we obtain
for the two-point correlation function, correct to O(q),

&q(s, )q(s, )&, =q, 'sech( —,PA, ) cosh[-, A, (P+ 2s, —2s,)], s, &s„

&q(s, )q(s, )q(s, )q(s, )&, = q,' sech(2 pb, ) cosh[-,'a, (p+ 2s, —2s, + 2s —2s )] s, & s, & s, & s .
(10a)

(10b)

Note that (10a) is identical to (1) after the continuation s, —s,- it/h. The Fourier transforms required
for Eq. (10) have been derived by Stinchcombe. '

Specialized to the limit P4, «1, the result can be written, correct to O(q), as

&q„q „&=q.'&'(&'+ ~„'+ (4nq. '/R)l ~. ll ',
where

;nc

& =&.[I —(4W.'/0h) 2 ~ '],
m=X

(12)

and rn, is a cutoff determined from 2mm, /P =h~, -~ '-her„ i.e. , m, -Ph(u„up to constants of order
unity. The cutoff reflects the fact that q(s) cannot change on a scale smaller than the kink width ~.
Since Pkiu, »1, Eq. (11) gives

b. =a,[1—(27!q,'/vh) ln(Ph&u, )]=~,(k, T/h&u, )'"'o' '". (13)
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The exponentiation is merely suggestive at this stage, but will be placed on a sounder footing by the
RG treatment which follows.

Although Eq. (11) is only exact to O(q), the form in which it is written (which corresponds to the
random-phase approximation for the equivalent spin- —, problem ) is extremely suggestive, since it is
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identical to the correlation function for a damped harmonic oscil. l.ator, with natural frequency 0 and
decay constant y, with the identifications

n=~/k, y=4qq, '/pm'.

Thus y/0 = 4qqo'/phd, -~ as T - 0 provided 2qqo'/mh )1. The "equivalent oscillator" is heavily damped,
therefore, as T —0 even though the classical motion of the real particle may be lightly damped. Also
KQ'/y =PA, '/(4qqo'/k) «k&T as T —0 so that the "equivalent oscillator" may be treated classically in
this regime, giving for the correlation function in real time

(q (t)q (0)) =q, ' exp(- P& 't/4qq, '). (14)

The absence of an oscillating part in Eq. (14) implies a total loss of phase coherence due to dissipation.
Indeed Eq. (14) is suggestive of a Poisson process corresponding to a mean tunneling rate

b, ,(g (T )/5= Pb, ~/4qq, 2 = (Pb, ,2/4qq, ')(kBT/h(u, )~"'o ~'" . (15)

In this approximation the mean tunneling rate vanishes as T- 0 since 2qqo'/wk) 1 by assumption.
These results can be placed on a somewhat firmer footing with an RG approach. The final term in

Eq. (7) is first simplified. Replacing the sine by its argument and integrating twice by parts utilizing
the periodicity of q(s) yields

Seff
M dq2

(16)

with wo arbitrary. The "kink approximation" to dq/ds is

dq/ds = 2qoge, . 5(s —s,. ) (17)

corresponding to kinks (e, =1) or antikinks (e; = —1) at locations s, The delta functions in (17) strictly
have a finite width ~ equal to the kink width, w - (@coo) '. Substituting (17) into the final term of (16)
yields, for the partition function,

z= p ( ) f '"f *" " '" ' f 'exp*Irp Q (—1)'' ln(
' ')I (18)

where

E, ,=A,7, cp, = 4qq, '/mh.

Equation (18) is the generalization of Eq. (8) to
the interacting case. The physical choice 7 p 7

has been made, and the logarithmic interaction
cut off at!s,. —s, ! = v, since distinct kinks are
not wel1. defined if their separation is less than
their width.

Equation (18) is the same starting point as that
used for the RG treatments of the Kondo problem
and the one-dimensional Ising model with inverse-
square-law interactions. ' RG recursion relations
for 6 and g may be obtained in the standard way

as a function of the cutoff ~. Following Anderson
and Yuvale we obtain

da/d in~ = (1 —q&/2)a, (19)

dy/d in~ = —pA'. (20)
These equations are valid for 4 «1 which for 7

6 P requires P&o«l as assumed earlier. The RG
flows in the (A, p) plane which result from these
equations are well known. ' There is a separatrix
&'=q —2 —2 ln(y/2) which separates flows to a.

or

A(T) =ho(kgT/h~o)~o ', (21)

in agreement with Eq. (13) which, al.though de-
rived by expansion in g, is thus seen to be cor-
rect also for 2qqo'/~h»1.

The vanishing of the mean tunneling rate as T- 0 is the precursor of a spontaneous symmetry
breaking at T = 0. The ground-state average of
the position coordinate plays the same role as
the spontaneous magnetization w. of the corre-

! line of stable fixed points ~ = 0, y == 2 from flows
which take the parameters outside the domain of
validity of the equations (i.e. , make A grow). We
concentrate here on the case where the flow is to
the line of stable fixed points, which occurs for
cpo) 2 and sufficiently small b, , [i.e. , 5,'(y, —2
—2 in(po/2)]. The simplest case is yo»2. Then
y may be treated as constant in Eq. (19). Inte-
grating from ~ = (hero) ' to 7 = P gives the running
value &(T) as

b, (T) =b. o(kHT/k&uo) "o~' '
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sponding one-dimensional Ising model with I/r'
interactions. Taking over the result from the
latter model, ' we predict that as a function of g,
(q) will at a critical. value q, -h/4q, ' change dis-
continuously from zero to a nonzero value. (This
means that for g &g, the ground state is twofold
degenerate. ) Equivalently, we can say that a
particle initially localized in, e.g. , the left-hand
well has a greater than 50% chance of being found
in the same well. after infinite time.

The most likely system for an experimental
test of these ideas is the SQUID,"in which the
flux through the ring plays the rol.e of the coor-
dinate q. For the case where the two minima dif-
fer by nearly a whol. e flux quantum, it seems
likely that tunnel. ing rates will. be too small to ob-
serve, but by varying the system parameters it
may be possible to arrange for the two minima to
be separated by a small fraction of a flux quantum,
making observation much more likely.

We woul. d l.ike to thank Professor A. J. Leggett
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Possible advantages of replacing the Peccei-Quinn U(1) quasisymmetry by a group of
genuine flavor symmetries are pointed out. Characteristic neutral Nambu-Goldstone
bosons %ill arise, which might be observed in rare K or p decays. The formulation of
Lagrangians embodying these ideas is discussed schematically.
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In order to understand why the strong interac-
tion does not exhibit large CI'-invariance viola-
tions, it is desirable to postulate that conserva-
tion of axial baryon number' U(1)„is violated
spontaneously, except for (soft) instanton ef-
fects. ' 4 Phenomenological considerations then
require that this symmetry be broken at a very
large scale, ' leading among other things to the
emergence of exceedingly light, exceedingly
weakly coupled particles ("invisible axions")'
which are essentially the Nambu-Goldstone bo-
sons associated with the quasisymmetry U(1)„.

Reflecting on this scheme, I think we can iden-
tify two unsatisfying features:

(i) Axial baryon number is only one small part
of a very large flavor symmetry group that
emerges when quark masses are neglected. Why

should it be treated on such a special footing'P
(ii) The requirement that the theory exhibit a

symmetry "except for instanton effects" seems
an artificial one. After all, instantons refer to
a method of calculation and not to an intrinsic
element of the theory. Although one can partially
justify the separation of instanton effects on the
basis that they are very soft (disappea. ring rapid-
ly at high momentum scales), ' it would seem
more satisfactory to have the offensive interac-
tion terms banished for real symmetry reasons.

These points reinforce one another, since en-
largement of the U(1)„symmetry might automa-
tically forbid the dangerous terms which pre-
viously were banished by appeal to the U(1)~
quasi symmetry.

Actually, point (i) should be viewed in a more
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