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The relativistic corrections to the Newtonian tidal accelerations generated by a rotating
system are studied. The possibility of testing the relativistic theory of gravitation by
measuring such effects in a laboratory in orbit around the Earth is considered. A recent
proposal to measure a rotation-dependent tidal acceleration as an alternative to the Stan-
ford gyroscope experiment is critically examined and it is shown that such an experiment
does not circumvent the basic difficulties associated with the gyroscope experiment.
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In the relativistic theory of gravitation, as
well as in Newton’s theory, a local system of co-
ordinates (“laboratory”) may be chosen which is
inertial except for the presence of tidal forces.
A general theory of tides has been developed
based on an extension of the concept of a local
Fermi frame.! In strong fields, the relativistic
tidal effects are predicted to lead to interesting
phenomena such as the emission of tidal gravita-
tional radiation.! Relativistic corrections to the
Newtonian tidal accelerations caused by a mas-
sive rotating source (such as the Earth) will be
considered in this paper and the possibility of
measuring these effects will be critically ex-
amined.

To interpret the results of measurements in a
laboratory frame in terms of a local clock and
locally determined spatial directions, it is neces-
sary to refer the (covariant) equations of motion
to a local tetrad frame consistent with the meas-
urement procedure. The simplest possibility is
to carry along a set of three (orthogonal) gyro-
scopes and to characterize all local events by a
Fermi coordinate system. Let? x(," be such a
tetrad system so that A, =a" is the tangent vec-
tor of a representative path (e.g., the center of
mass) and r(;," are the spatial (“gyroscope”) di-
rections. The scalar tidal accelerations take the
form —%;;x* under the conditions of interest here
(see Ref. 1 for details). Here x* are the local
spatial coordinates and the symmetric tidal ma-
trix k is given by

ki =Ruupo)‘(i)p>‘v7\(j)p)‘o' (1)
Thus the local “Newtonian” equations of motion
(in terms of the proper time 7) should be sup-
plemented by this tidal force. It usually proves
convenient to use spatial axes A ;)" =M’ (T)A;,",
where M is an orthogonal matrix. The local

equations of motion are now simply those in a ro-
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tating system with the tida_l matrix given by
K=MrM T, (2)

The tidal matrix depends on the moments of the
source; for a rotating mass distribution, one may
separate the contributions of the mass and angu-
lar momentum. The latter effect may be attrib-
uted to a gravitational “magnetic” field which is
anticipated on the basis of a certain analogy with
electrodynamics.® The nature of such a field was
first elucidated (to linear order in angular mo-
mentum) in the framework of Einstein’s theory by
Thirring and Lense.* Efforts aimed at obtaining
observational evidence for this field have con-
centrated on an experiment to measure the cumu-
lative effect of the precession of a gyroscope in
orbit around the Earth with respect to fixed
stars.® The frequency of precession consists of
a geodetic term and a mass-current term caused
by the mass (M) and angular momentum (J) of
the source, and reflected in the metric perturba-
tions,

¢=GM/c% and ¥=GJ/c3?, (3)

respectively. The geodetic (“Schwarzschild”)
term is essentially the Thomas precession for a
“Keplerian” orbit, and hence the precession is
due to a coupling between the gyroscope’s spin
and its orbit. The mass-current (“Lense-Thir-
ring”) term is due to the coupling of the gyro-
scope’s spin and the angular momentum of the
source. The two effects, of amplitudes A s = ¢ ¢*/?/
v and A | r=c¥/7, are orthogonal for a polar orbit,
parallel for an equatorial orbit, and a mixture of
these for an inclined orbit. The basic require-
ments for testing the predictions of Einstein’s
theory for the two effects are that the extraneous
torques on the gyroscope must be controlled such
that the resulting precession amplitudes are well
below A and A | 1 levels, respectively.®
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In a recent paper, Braginsky and Polnarev’
have proposed an experiment to measure the in-
fluence of the rotation-dependent tidal accelera-
tion on the oscillations of a spring in orbit around
the Earth. According to these authors, such an
experiment can circumvent the necessity of using
“highly sensitive techniques” required for the
gyroscope experiment. Our investigation shows,
however, that the basic physical requirements
for measurability are the same for the two ex-
periments. To demonstrate this fact and to il-
lustrate the nature of the effects involved, the
tidal matrix will be given in this paper for an
equatorial and a polar circular geodesic orbit in
the field of a rotating mass approximated by the
exterior Schwarzschild metric together with the
Lense-Thirring term. The tidal matrix can then
be written as

K=K 1+x5+x"7), (4)

where the extra terms are the relativistic cor-
rections to the Newtonian effect K~. For a cir-
cular orbit with Keplerian frequency w,=c¢2/r,
the Newtonian tidal matrix is KN=w 20, where o
is diagonal with respect to spatial axes that coin-
cide with coordinate directions and 0, , == 2, 0gg
=0,,=1.

Consider first an equatorial circular orbit. If
the orbiting platform is rotated with a frequency
w, (measured according to a local clock) with re-
spect to a set of local gyroscopes, the platform
remains fixed with respect to locally determined
(spherical) coordinate directions.® The tidal ma-
trix is diagonal with

xS=[¢/(1-3¢)]n, (5)
and
XLTg;z(/)—l/zwn, (6)

where n,, =3 and 74 = 3 are the only nonzero ele-
ments of 7.° The ratio of the two effects is of the
order of that of the rotation frequency of the
source to the Keplerian frequency, just as for
the two terms in the gyroscope precession. A
(Schwarzschild) correction proportional to G2 is
not, of course, unexpected in a relativistic the-
ory of gravitation. On the other hand, the Lense-
Thirring correction is due to a coupling between
the spin of the source and the orbital angular mo-
mentum of the platform. Thus the effect vanishes
for a radial orbit along the axis of rotation. The
specific form of this coupling for the equatorial
orbit results in opposite effects for prograde and
retrograde orbits. [The upper sign in Eq. (6)

corresponds to a prograde orbit. ]

To investigate the nature of this coupling fur-
ther, we consider a geodesic polar orbit with
constant », 6=wTt, ¢ =Q7, and t =y7. Here w
=yw, and

y=(1-3¢)"2, (1)

The nodes are dragged in the sense of the spin of
the source at a rate (in units of proper time)

Q=2vA 1, (8)

in accordance with the work of Lense and Thir-
ring.’® The gyroscope axes will be so chosen
that initially (7 =0) the spatial directions are
those of Cartesian axes for J=0. The orbiting
platform will be rotated with frequency w, (ac-
cording to the local clock) with respect to the
gyroscopes so that the directions fixed in the
platform correspond approximately to the (spher-
ical) coordinate axes.'’ The tidal matrix with
respect to these axes consists of a Newtonian
part (just as before), a Schwarzschild part given
by

X°=y%¢, (9)

where the only nonzero elements of { are {-=3
and {55=3, and a Lense-Thirring part with non-
zero components

XE7LT=_ZX;_JLnga,yz(p-l/zsz, (10)

and
X5, T =X55"T=3ay% "% sin(w,7). (11)
Here @ and A are given by

a=(1-2p)" (12)
A= 3—; [(1+2¢)cos(wr) = (1= ¢)cos(w,m)]. (13)

Thus for the polar orbit the rotation-dependent
terms contribute only to the off-diagonal elements
of the tidal matrix in contrast to the Schwarzs-
child effect. In this sense, the two effects are
orthogonal for the polar orbit and parallel for

the equatorial orbit, just as for the analogous
effects in the precession of a gyroscope.

The Lense-Thirring term for the polar orbit is
of a harmonic nature but its amplitude depends on
the magnitude of w,7. At early times, w,7<1,
this effect is of the same order as for the equa-
torial orbit. However, at late times,'? 1< w,T
« ¢/}, it could be larger by a factor of w,7. This
follows from Eq. (13) for w,7 <¢ ™!, since

A =~ cos(wyT) =3 (1+2¢ )w,T sin(w,T). (14)
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The appearance of the secular term, which is
dominant after many revolutions, is due to a beat
involving w and w,. This same beat phenomenon,
i.e., the deviation of orbital frequency according
to a local clock from that determined by an in-
ertial clock, is responsible for the Thomas pre-
cession. It would be of interest to measure this
secular effect, thereby providing a new test of
Einstein’s theory of gravitation.

A complete assessment of the various require-
ments for the measurement of the new relativistic
effects will not be attempted here except to point
out that the same basic difficulty is encountered
here as in the gyroscope experiment. To see this,
one need only calculate the correction to the tidal
matrix brought about by the deviation of the gyro-
scopes from ideal parallel transport due to ex-
traneous torques. The analysis is simplified if
we consider a local orthonormal tetrad X",
where X,," =A" is a geodesic’® and the spatial
axes follow the transport law

DX, /DT=w/ X", (15)

with w;; (7)== w;; (). It follows that the local
motion of matter (referred to these axes) is in-
fluenced by a tidal acceleration term just as be-
fore, except that 2 must be replaced by «,

+d———“w“+2w“7j’ ', (16)

Kij =Rij+ = - Wi W,

where % is given by Eq. (1) with A" replaced by
Xy and
X'

17

In most applications—e.g., the oscillations of a
spring in a fixed direction—the symmetric part
of k is of primary interest,

Yii =X(i)”7\

piv

(18)

Moreover, k differs from % by both secular and
harmonic terms. A detailed examination (to first
order in w,;) shows that, with neglect of the ro-
tation of the central body and for constant w;;,

-5 1 1 14
Kap=hRi +wy vy +w;v) —w,w; .

Bij=ky+(ky 0t +k 00T

+harmonic terms, (19)

where the harmonic terms are systematic and
trace free. The quantities y;; have an amplitude
of the order of w,; therefore, the amplitude of
w;; must be kept well below A and A | 7 in order
to measure the Schwarzschild and the Lense-
Thirring effects, respectively. But this is just
the requirement necessary for the success of the
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Stanford gyroscope experiment.'*

To sum up, the equations of motion of a physi-
cal system (e.g., a spring) with respect to a local
inertial frame (introduced along the center of
mass of a laboratory in orbit around the Earth)
have their usual flat-space-time form, except
for the presence of tidal accelerations which
represent space-time curvature as “perceived”
by the system. We have calculated these addition-
al terms for a specific set of three orthogonal
ideal gyroscopes representing the local inertial
frame. The equations of motion with respect to
any other set of three independent local axes can
be obtained from the transformation of the cor-
responding equations in the inertial frame. The
predictions of the theory concerning tidal ac-
celerations experienced by the system depend on
the axes used to define the local frame. The
local axes may correspond, for instance, to real
(i.e., nonideal) gyroscopes or to telescopes
“fixed” on distant stars. How accurately should
the local axes be defined along the orbit to allow
a comparison of the theory with experiment? We
have investigated this question only for a particu-
lar set of nonideal gyroscopes, but the answer
appears to be general: Local gyroscopes must
satisfy the same performance criteria as in the
Stanford experiment. Therefore, a variant of the
Stanford experiment is suggested: A precise
gyroscope in polar orbit defines a “fixed” direc-
tion locally, along which the tidal acceleration
acting on a spring is measured. The comparison
of the technical feasibility of the two experiments
is, however, beyond the scope of this paper.
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A quantum mechanical particle which moves in a symmetric double-well potential, and
whose interaction with the environment is described in the classical regime by a phe-
nomenological friction coefficient 7, is considered. It is shown that, provided ng /7 ex-
ceeds a critical value of order unity (g, are the locations of the potential minima), the
mean rate of tunneling between the degenerate minima decreases with temperature, lead-
ing at T = 0 to spontaneous symmetry breaking.
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There has been recent interest!'2 in the influence of dissipation on quantum funneling out of a meta~-
stable state. Here we consider the related problem of quantum cokerence. Specifically we consider a
particle of mass M moving in a symmetric double-well potential V(g)=V(-g) which has minima at ¢
=+q, and a local maximum at ¢ =0, and whose classical equation of motion is Mg +ng=-dV/dq +F . (t).
We limit our considerations to temperatures small compared to the frequency w,=[M"1V""(g,) ]2 of
small oscillations around one of the minima: ky7T <7%w,, the limit in which thermal activation over the
barrier can be neglected compared with quantum tunneling. Further, in the limit Zw, <AV =V(0)-V(q),
one can truncate to the lowest two states ¢,,¥, with energies E ,E,, respectively. If the system is
prepared at 7 =0 and time #=0 in the state ¥, = (¥, +¥,)/V2 representing a wave packet localized in the
left-hand well, the amplitude for being in the left-hand well at time  oscillates with frequency A/l
=(E, -E,)/l. This is the phenomenon of “quantum coherence.” At finite temperatures this oscillation
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