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ic generation is much weaker for junctions with
higher tunneling resistance. No further harmon-
ics have been found yet.

If the dc current was increased while the bias
voltage was held fixed by readjusting the magnetic
field, the peak height of the Josephson phonons
increased accordingly; see Fig. 3. The dc cur-
rent scales with the electromagnetic wave ampli-
tude. ' At the same time, the constant dc voltage
implies a constant amplitude of the ac-Josephson
current. ' Hence, the phonons must arise from
1:1conversion of the electromagnetic waves,
rather than from direct coupling to the ac-Joseph-
son current. '

The background intensity of phonons also in-
creased in Fig. 3 with the electromagnetic wave
amplitude. This suggests that the greater part of
the background is due to photon-assisted tunnel-

ing, harmonic generation with reabsorption, ' and
subsequent quasiparticle relaxation and recom-
bination, while a smaller part must arise from
thermal quasiparticle tunneling. For practical
applicationy, the background should be as small
as possible. This requires the 1:1conversion to
be much stronger than the competing processes.
This is the case for lead junctions; see Fig. 4.

To estimate the coupling strength of the 1:1con-
version process in Sn junctions, we use the fact
that it is comparable, according to trace j of Fig.
2, to the photon-assisted tunneling process at the
onset Vd, =2&/3e. The latter is quantitatively
known" and yields, in lowest order, the phonon
output power

P„„„=26,( V„ /4Vd, )'I( 2&)/e,

where V„ is the spatial average (rms) of the ac
voltage, and 1(2&) the tunneling current above the

gap voltage. The coupling strength can be con-
veniently expressed by the effective admittance
Y =P/V„'. With I(2&) =0.5 A, we have F„»„
=200 '. Any 1:1conversion mechanism must
yield an admittance of the same order.

The most common way of conversion is the
piezoelectric effect. Assuming that the oxide
barrier is piezoelectric as a result of the growth
process (preferential orientation, polar impuri-
ties, nonstoichiometry, etc.), one would obtain
the acoustic power"

P =A (~e V„)'/4pu'.

Here, A is the area of the junction, e the piezo-
electric constant, p the density, and v the sound
velocity. The oxide thickness was assumed to be
much smaller than the wavelength. Withe =0.7
mm' &(u =2&/3, p =7.3 g/cm', u =1.7 km/s for
tin, and taking e =0.2 A s m ' like in quartz, we
obtain F= 250 ', obviously the right order of
magnitude.

For this mechanism one may expect the genera-
tion of coherent plane waves propagating perpen-
dicular to the barrier, because the wavelength of
the photons is much larger than that of the pho-
nons. However, the oxide layer is far from being
planar on the scale of the phonon wavelength,
since the metal films look tarnished to the naked
eye. In fact, we have preliminary results show-
ing that the angular distribution rather corre-
sponds to diffusive emission.

Compared with piezoelectricity, the conversion
of the electrostatic transducer made up by the
two films of the junction is negligible. The same
holds for the conversion by the magnetic pres-
sure of the electromagnetic waves, and for the
Abeles mechanism" which relies on the momen-
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turn transfer of accelerated quasiparticles to the
lattice.

There is a further possible excitation mecha-
nism which is truly incoherent. If the oxide is
considered to be an amorphous material, it
should contain two-level systems which absorb the
electromagnetic waves resonantly. " The excited
two-level systems will relax quantitatively via
emission. of phonons of the same frequency, be-
cause of the large phonon density of states. In
this case, the absorbed photon power is"

P =2vA&up "n(E)V„'/d,

where p' is the dipole moment, n(E) the density
of states of the bvo-level systems, and d = 1 nm
the oxide thickness. In a dirty glass (BK7),
P'n(E)/4&&, =3X10 ' was observed. " Since the
oxide was grown under fairly dirty conditions,
we may use this value, and obtain Y = 100 0 ',
again the right order of magnitude.

In conclusion, we have discovered a new source
of tunable monochromatic phonons with frequen-
cies up to the energy gaps of superconductors.
The frequency resolution of the source should
prove to be extremely high, because it depends
only on the stability of the Josephson frequency.
As yet, there are two possible ways to explain
the effect quantitatively, namely, by the assump-
tion of piezoelectricity or of two-level systems

in the oxide. A decision may be made by experi-
ments on the angular distribution of phonons
emitted by smooth junctions.
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Pulsed-NMR measurements of methane on graphite have been performed between 45 and
105 K for 0.2 to 1.1 monolayers. Spin-relaxation times show first-order melting at 57 K,
sensitivity to the hypercritical fluid, and continuous transitions where an incommensurate
solid displaces the registered phase at both higher temperature and coverage. These
measurements, plus activation-energy comparisons, provide a significant clarification
of methane's high-temperature behavior.

PACS numbers: 68.45.+z, 68.45.-v, 76.60.Es

The widespread interest in adsorbed films on

graphite is sustained by a continual unfolding of
novel predictions and observations. In particular,
registry and associated commensurate-incom-
mensurate transitions (CIT's) have inspired stud-
ies of Potts model analogies, orientational phas-
es, dislocation models, domain-wall configura. -

tions, possible low-temperature liquids, and
chaotic phases for coverage -driven CIT's. ' In
addition, transitions from a registered phase into
a higher-temperature incommensurate (floating)
solid have been proposed. ' The phase diagram of
adsorbed krypton' possesses a well-developed
registered phase which melts directly into a two-
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