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Molecular states are characterized by enhanced electromagnetic deexcitations of many
different multipolarities. The expected enhancement of El, F.2, and E3.transitions is
examined by deriving molecular sum rules for radiative deexcitation widths and via a
dimensionality approach. The enhancement of the El transitions is the most striking.

PACS numbers: 21.60.0x, 23.20.&k, 2&.40.Lw

The single-particle shell model and the collec-
tive (quadrupole) degrees of freedom are clearly
evident in the low-lying level structure of nuclei.
In 1960 it was suggested' that high-lying reso-
nance states jn C +' C correspond to quadrupole
vibration-rotation excitations of dinuclear molec-
ular states in the composite nucleus ~Mg. Re-
cently, ' it was suggested that "diatomic nuclear
molecular" states arise from excitation of a new
degree of freedom~ dipole degree of freedom—described by the relative separation vector
connecting the centers of the two clusters. The
existence of such a collective degree of freedom
can be deduced from several observations.

One such observation is the spin and parity of
members of an apparent rotational band built on
a fixed intrinsic molecular state. When the two
nuclear clusters involved are not identical, rota-
tion by 180' around an axis perpendicular to the
symmetry axis is not a symmetry operation so
that both even and odd spins are allowed in the
%=0 band. However, reflection in a plane con-
taining the symmetry axis is still a symmetry,
leading to a connection between parity and spin. '
Thus, a K = 0 molecular band will contain the
states 0', 1, 2', 3, . . . in an alternating parity
sequence.

Another observation indicative of a molecular
structure is that of enhanced F.1 transitions
(within a rotational band). ' This is possible only
when the ratio of the charges of the two clusters
is different from that of their masses; under
these conditions the center of charge does not
coincide with the center of mass, ' resulting in a
nonvanishing intrinsic dipole moment. While E1
transitions are expected to be enhanced in such
a situation, the B(E1) may still be only a few per-
cent of the single-particle estimate. A central

goal of this paper has been to find new measures
for such molecular radiative decay widths. To
this end we have derived a molecular dipole sum
rule to be discussed below.

A third indication of a molecular cluster may
be found in the cluster decay width and its rela-
tion to the Wigner sum rule. The two sum rules
of decay widths can be used simultaneously to
yield measures of the probable existence of a mo-
lecular structure. For light nuclei, cluster decay
widths are readily available as some of the high-
er-lying states in a proposed band may be ob-
served as scattering resonances.

Recently, ' a very similar cluster approach has
been suggested for heavy (Z &82) nuclei. In this
case, cluster widths are deduced from the ground-
state n-particle decay widths, and from relative
hindrance factors for decay to excited states.
These have long been known to be small for the
low-lying 1 states in the Ra isotopes. '

Recent experimental investigation suggests the
existence of an n+ "C molecular band in the light
nucleus "0,' as well as an n+'"Rn one in the
heavy nucleus '"Ra.' In particular in "0 the
proposed cluster band involves a 0', 1, 2', 3
sequence based on the four-particle, two-hole
(4p-2h) 0' state at 3.63 MeV. Enhanced El tran-
sitions [B(E1)-10 ' Weisskopf unit (W.u. )] and
E2 crossover transitions [B(E2) -20 W.u. ] were
also found, ' as shown in Fig. 1.

A first rough estimate of the EI decay rate can
be obtained, in the spirit of Gell-Mann and Te-
legdi, ' by replacing the nuclear radius in the def-
inition of the Weisskopf unit with the equilibrium
displacement of the center of charge from the
center of mass. In this way a new "molecular
Weisskopf unit" (m.W.u. ) for El transitions is
obtained. For example, for n+ "C states in "0
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FIG. 1. Natural-parity states in ' O. In solid arrows
we show all the enhanced E1 (-10 2 gl.u. ) and enhanced
E2 (- 20 W.u. ) of '80. They were only recently deter-
mined (Ref. 7). Inset: the energy of the 0&+, 1, 23',
33, and 43' states plotted vs J (J+ 1) ~

we find 1 m. W.u. =1.79X10 ' W.u. Thus, B(El)
&2x10 ' W.u. could be considered enhanced on
the molecular scale.

While the renormalization of the W.u. to molec-
ular units can be used to measure enhancement
of B(E1), it still does not suggest any maximum
allowed B(El) between molecular states Thu.s
we derive a sum rule for "molecular" Fl transi-
tions. The energy -weighted electric dipole sum
rule for a nucleus (A, Z) is given by

S,(E1)=P,(E, -E, )B(E.1; i -f).
9 ~Z

4n A 2m

Here i stands for the fixed initial state and f for
the final states (to be summed over). E, and Ez
are the corresponding energies and m the nucleon
mass.

If we now only consider transitions in bands
based on a "molecular" intrinsic state, excita-
tions of the individual clusters are not allowed.
It is, therefore, reasonable to assume that the
molecular dipole sum rule (reflecting excitation
in the relative motion of the clusters only) is ob-
tained from the total nuclear sum rule by simply
subtracting the contributions of the individual
clusters —as expressed by their own nuclear sum

I

rules. Explicitly, if the nucleus (A, Z) is de-
composed into two clusters (A„Z,) and (A„Z,),
then the corresponding energy-weighted "molec-
ular" sum rule is

S,(El; A, +A, )

= S,(E1;A) —S,(E1;A, ) —S,(E1;A, )

9 g g z 2 g2e2

As an example, for n-particle clustering S,(E„.
o. +A, ) ~(N -Z)'/A(A -4) which includes the cor-
rect isospin dependence explicitly. For n+ "C
we find the above molecular sum rule to be con-
siderably smaller (+) than the nuclear sum rule.
Thus the measured B(E1:1 -0, ') =2.8x10-' W.u.
in ' 0 exhausts a significant fraction (13%) of the
molecular sum rule. This B(E1) corresponds to
15.6 m. W.u.

An exact microscopic derivation of the sum rule
(1) follows from a decomposition of the nuclear di-
pole operator D [defined as D =eg~(r~-R), where
r~ and R are the vector positions of a proton and
center of mass of the nucleus (A, Z), respective-
ly]: D=D, +D, +D~. Here D, (i=1, 2) is the (nu-
clear) dipole moment of the ith cluster with re-
spect to its own center of mass: D, =eg~(r, ~
—R,. ), and D„ is the "molecular" dipole operator,

D~ = eZ, (R, —R) + eZ2(R2 —R)

=e[(Z,A -Z A )/A]S, (2)

which is the dipole moment of (A, Z) when the cen-
ter of mass coincides with the center of charge
in each of the clusters. S in (2) is the vector con-
necting the clusters' centers of mass. If we call
P the conjugate momentum of S, the center-of-
mass kinetic energy K has a similar decomposi-
tion: K=K, +K, +P'/2p. , where K,. is the internal
kinetic energy of (A, , Z;) and P'/2 p. is the kinetic
energy in the clusters' relative motion (p. is the
reduced mass).

The nuclear sum rule is known to be given by

s,(E1)

where the total Hamiltonian B can be replaced by
the kinetic energy E for velocity- and isospin-
independent potentials. We immediately find

![D,[K, D ]])=![D„[K„D,tJ ])+![D„[K„D,~J J)+![D„, [P'/2p. , D„J),
corresponding to an exact decomposition of the total nuclear sum rule. The first two terms on the
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right-hand side of Eq. (3) describe El excita-
tions in each nuclear cluster separately while the
last term describes molecular E1 excitations.
The operator D~ excites modes where the center
of charge fluctuates with respect to the center of
mass, but at the same time the center of charge
in each cluster is fixed with respect to the c.m.
of that cluster. Note that Eq. (1) is just (3) when

rearranged. The molecular sum rule can thus
be calculated as in (1), or directly by evaluating
the double commutator of D„with P'/2 p, , leading
to the same exact expression. Clearly the sum
rule is model indePendent and no assumption re-
garding the existence of molecular bands is neces-
sary for its va.lidity.

Approximate molecular sum rules for higher
electric multipolarity transitions can be worked
out, by taking only the one-body part of the cor-
responding multipole operator in the center of
mass. In such an approximation the nuclear sum
rule (for 2 -pole) is

( )
I' z(2A. +1)' &, ,g, )

where e„ is the effective charge of a proton or
a neutron. A molecular sum rule is then calcu-
lated as in (1). For instance, the E2 molecular
sum rule is

S,(E2, A, +A )

The moments q~ can be calculated in a simple
classical picture if we assume a "molecular
clustering" intrinsic state with an equilibrium
separation S,. The qq, can be expressed in terms
of the intrinsic moments of equal or lower multi-
polarites of the individual clusters and the sepa-
ration S,. This can be achieved with the aid of a
nezo moment expansion, as is explained below.

Let 0 and 0' be two points along the symmetry
axis of a charge distribution, separated by a dis-
tance a. The moment q q, with respect to 0 can
then be expressed in terms of a and the moments

q„,' ( p, -A) with respect to 0' in the following ex-
pansion:

(~ )q~o 0

This expansion can be formally expressed as a
binomial: q~=(q, '+a), where q, '" is under-
stood to be q»'. Equation (5) is an immediate
consequence of similar expansion' for the Le-
gendre polynomial

r P z(cos 0) = Q ( „)~'"P ~(cos 0')a" ",

where primed and unprimed quantities refer to
0' and 0, respectively.

As an example, we have

2

q2p Q [q2p
'

+2~, qyo +Z'll' ],

The molecular E2 sum rule (4) is of the same
order of magnitude as the regular isoscalar en-
ergy-weighted F.2 sum rule. Thus we expect en-
hanced (with respect to the Weisskopf unit) E2
crossover transitions in the molecular band, as
usually found for collective states in nuclei. The
crucial new feature of a molecular band is the
enhancement of E1 transitions.

From a geometric viewpoint, this enhancement
of the higher multipoles can be considered as a
reflection of the fact that the o. 8(A —4) molecu-
lar shape, when expanded in spherical harmonics,
requires substantial higher -order terms.

A third measure of molecular radiative widths
can be obtained from the assumption that the
states involved are members of a pure "molecu-
lar" rotational band. The radiative transitions
can then be easily related to the intrinsic static
moments (qq, ) of an axially symmetric molecular
state, as is the case with ordinary quadrupole
bands. '

where q~ ls the 2 -pole moment of cluster i,
and a, =(A, /A)S„a, = -(A, /A)S, . It is clear that
the two contributions of the clusters (first and
third term) are both positive. The cross term,
which arises from a polarization of the cluster,
is positive too. Thus, again enhanced E2 transi-
tions are expected, arising from the increase in

q» for the molecular state. This is in contrast
to the case of atomic molecules, which comprise
both positive and negative charges, so that the
molecular polarization gives rise to a smaller
quadrupole moment contribution.

In the classical picture S, can be estimated
from the experimentally known rotational mo-
ment of inertia. When the cluster overlap is
small, S, can be estimated from the cluster size,
with use of ~;=~,A. ,

' ' with ~, =1.4 fm. There-
fore, all B(EA) can be estimated in this classi-
cal picture.

Thus we calculate for "0, B(El:1 -0, ') =0.17
W.u;; the observed El is 17% of that expected
transition rate calculated for a multipole expan-
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sion of a pure molecular state. It also exhausts
13'fp of the El molecular sum rule. The suggest-
ed F.2 transition in the molecular band in "0 of
B(E2:2,'-0, ') =26 W.u. ' consists of 23%%u~ of the
molecular sum rule for E2 radiative width. The
J"=3, state at 8.29 MeV in "0, a member of
the proposed' n+ "C molecular band, has an n
width which is 20/~' of the Wigner sum rule. In
the sum-rule analysis of radiative widths we only
consider B(EA:O'-A); however, as shown in Fig.
1, all five E1 and F'2 in-band transitions are en-
hanced, ' as expected, since they are related to
the EA.:A. -0' transition. The n width of the 4, '
resonant state is also large, as shown in Fig. 1.
We consistently find that the radiative sum rules
for E1 and for E2, the Wigner sum rule for n-
particle widths, and the classical multipole ex-
pansion all suggest that the proposed band in "0
indeed has a large parentage based upon the pro-
posed o. + "C dipole molecular band.

For light nuclei extended (many h~) shell-model
microscopic calculations can be done. It would
be interesting to determine whether such an en-
hancement of both the B(E1) and B(E2) together
is predicted by such calculation, and if indeed
it arises from clustering. "

In heavy nuclei such shell-model calculations
are beyond present computer capabilities. Thus
a phenomenological' approach is vital. The ex-
perimental investigation of radiative width in the
Ra-Th isotopes is now in progress. ' Branching
ratios for El/E2 in '"Ra have been reported, '
and the B(E2) for '"Ra can be estimated from the
systematics of the Ra isotopes. In this way en-
hanced E1 transitions have been found in '"Ra
[B(E1)—10 ' W.u. ].

It thus appears that the dipole molecular collec-
tive degree of freedom plays a role in the struc-
ture of both light and heavy nuclei. The radiative-
width sum rule, derived here, provides a meas-
ure of the extent to which molecular states are
present; together with the cluster-decay-width
sum rule (the Wigner limit), it can provide a

crucial test for the existence of nuclear molecu-
lar states.
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