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solution of Eq. (1). Thus, » has an upper limit of
the order of ;. This is the reason why the num-

ber of the coexisting harmonic solutions is propor-

tional to #5.

The above consideration is valid for any delay-
differential equation of the form (1), provided the
corresponding difference equation (3) exhibits
period-doubling bifurcations. To confirm this,
we made the same numerical simulation for the
following four functions f(x; w): (i) mw(1-x),

(i1) wx(1 =x?), (iii) wre™, and (iv) wx(1+x%"%
As was expected, structures of parameter do-
mains which are topologically equivalent to Fig.
4 have been found for all of these functions. A
remarkable fact is that the maximum degree of
the harmonic solutions realized by increasing u
for fixed ¢z, #,ux, iS about the same in all cases.
For example, we found ., =3-5 for ;=20 and
Nmax =1 fOr £ =40 in all cases. This tells us that
there may exist some quantitative universality in
the parameter dependence of the number of the
coexisting higher-harmonic solutions. Further
investigations will be reported elsewhere.

The authors are very grateful to Professor
F. A. Hopf for sending experimental data prior

to publication and to Professor H. Hasegawa for
continual encouragement.
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m experiments, lockings to the ninth to thirteenth
harmonics have been observed even by scanning u for
fixed ¢ ;. The reason for this disagreement with the
numerical results is not clear.
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Bell’s theorem is formulated as a nonlocality property of quantum theory itself, with
no explicit or implicit reference to determinism or hidden variables. A recent Letter

on this subject is discussed.
PACS numbers: 03.65,Bz, 02,50.+s

In a recent Letter! related to Bell’s theorem?
Fine proved several propositions, and asserted
the following conclusion: “Proposition (2) shows
that, despite appearances, no significant general-
ity is achieved by those derivations of the Bell/
CH inequalities that dispense with explicit ref-
erence to hidden variables and/or determinism:
The assumptions of such derivations imply the
existence of deterministic hidden variables for
any experiment to which they apply.”

This conclusion consists of two assertions,
which must be distinguished. The second is
meant to be a rephrasing of proposition (2), and,
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as such, is technically correct. However, it is
misleading because of two semantic irregular-
ities: (1) Fine leaves the word “local” out of his
name “deterministic hidden-variables models.”
Usually this word is inserted to remind the read-
er that the models in question have an important
factorization property that normally arises from
the idea that the deterministic hidden variables
are separated into two local parts, each of which
determines those results of the experiment that
occur in one of two separated regions. (2) Fine
leaves the word “model” out of the rephrasing.
This creates the impression that what was proved
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was the actual existence of deterministic hidden
variables, rather than the existence of a certain
kind of factorizable model.

The first part of Fine’s conclusion is incorrect.
Fine’s proposition (2) limits in no way the gen-
erality achieved in the cited works. The aim of
those works was to identify a locality property
that does not depend on deterministic hidden
variables but is incompatible with the statistical
predictions of quantum theory, and thereby to ex-
tend Bell’s result, that no local deterministic
hidden-variables theory can agree with quantum
theory, to the much larger class of all local the-
ories. In this context Fine’s proposition (2) en-
tails, as he correctly asserts in the second part
of his conclusion, that the statistical predictions
of any local theory can be reproduced or simu-
lated by the predictions of some local determin-
istic hidden-variables model. This nontrivial
result permits the general conflict between quan-
tum theory and local theories to be proved by re-
duction to the special case of local deterministic
hidden-variables theories considered already by
Bell. However, a nontrivial reduction of a gen-
eral theorem to a special case does not render
that generalization insignificant. Moreover, in
this case the results of Fine and of Bell taken
together are not sufficient to obtain the general
result. The crucial input is precisely the identi-
fication of the locality property that does not de-
pend on deterministic hidden variables but is in-
compatible with the statistical predictions of
quantum theory. Nothing in the works of Fine or
Bell identifies this locality property.

To make this point absolutely clear a concrete
example of a generalization of the kind under dis-

cussion is needed. Rather than restating an exist-

ing work, I use the opportunity to present a mod-
ified, and intrinsically interesting, version of a
previous theorem? that makes weaker assump-
tions and shows quantum theory itself to be non-
local in a physically reasonable sense that is
formulated with no explicit or implicit reference |

to determinism or hidden variables.

The point of departure is Bell’s theorem, which
says that any theory compatible with the statisti-
cal predictions of quantum theory is nonlocal,
provided the theory is a deterministic hidden-
variables theory. The aim of the generalization
is to remove this proviso.

The experiment used to demonstrate the result
is well known.?'® I add one extra feature. The
particles entering the original scattering experi-
ment are monitored by fast electronics that allow
the individual pairs to be identified. Those scat-
tered pairs i that pass through two polar escape
holes in a spherical array of counters are num-
bered i=(1,...,n). The fast electronics and
known geometry allow the individual arrival times
t; at two Stern-Gerlach devices A and B to be
placed in separate and known time windows.

The 7esult of the experiment is specified by

5a)y (1)

where each 7,; and ¥; takes a value of either
+1 or -1, corresponding to a deflection along
the direction D, or Dy, or against this direction,
respectively.

There are two alternative possible settings D ,’
and D'’ of the direction D,, and two alternative
possible settings Dy’ and D'’ of Dy. The experi-
ments are set up so that both the choice between
D," and D'’ and the subsequent deflections and
recordings of the results »,, [i=(1,2,...,n)] will
occur in a space-time region R ,, and similarly
for B, where R, and R are spacelike separated.

The four alternative possible experiments are
labeled by the four values of (D,,D;). For each
alternative value of (D,,Dy) there are (2")* con-
ceivable results ». To each conceivable result
7 of each of the four alternative possibilities (D,
Dj) quantum theory assigns a probability P.

Consider the set S consisting of all conceivable
combinations of the conceivable results of all
four alternative possible experiments. The dif-
ferent elements of S correspond to the different
possible functions

’}’=(’I’A;’VB)=(’VA1, st ’/rAn 3V B1s - - -

YDy, Dg)=(¥, (D4, D)y .. ¥ 4, (D4, Dg) 75Dy, Dg)y. .. #5,(Da, D)), (2)

where the possible values of each functionr ,; (D,,
Dg) and v, (D,,Dy) are +1 and — 1.

A general theory T that makes statistical pre-
dictions for all four possible experiments of the
kind under consideration here will be said to en-
tail a nonlocal connection (or be nonlocal) if, as
n tends to infinity, there is no conceivable com-
bination of conceivable results of the four alterna-

|

tive possible measurements that is compatible
with both the statistical predictions of 7' and the
locality conditions that the results in each region

be independent of the choice made in the other:
rAi(DA!DB)ZVAi (DA), (3)
75 (D4, Dp)=7p; (Dp).
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Quantum theory predicts that, whichever of the One such theory is quantum theory itself.

four experiments (D,,D,) is performed, the cor- What do Fine’s arguments and results show?
relation parameter As delicate issues are involved it is best to state

things precisely. Consider a couple (E,T) con-

clr(D,,Dy)] sisting of an experiment E, and a theory 7' that

makes predictions about E. Each experiment E

12 consists of a set of four alternative possibilities

= 27140 D) i5(D4, D) (42) " of the kind being discussed.

Some theories predict probabilities and some
will, as n tends to infinity, come to satisfy predict individual results. Let P(E,T) represent
the probabilities predicted for E by T, if such

|elr (D4, D)1 - €D, D5)| <0.03, (4b) predictions are made. Let (F) represent the con-
where ¢(D,,Djp) is a number specified by quantum  ditions imposed on P(E,T) by the requirements
theory. But Bell’s arithmetic shows® that there on Fine’s class of deterministic hidden-variables
is no conceivable combination of conceivable re- models. Let R(E) represent a conceivable com-
sults that satisfies both (3) and (4). Thus any the-  bination of conceivable results of E .
ory T that gives the prediction (4) is nonlocal. Two classes of couples (E,T) may now be de-

l fined:
Crp={(E,T); P(E,T) is defined and satisfies (F)}, (5)
Cyy =1{(E,T); P(E,T) is defined, and no conceivable R(E) is compatible with both

P(E,T) and (3)}. (6)

The subscripts FD and NL stand for factorized |

deterministic (as defined by Fine’s equations) and theories introduced in this work is equivalent to

nonlocal (as defined by the present work). Two a similar one that could be defined by using
semicomplementary classes Cyrp and Cyy.=Coc Fine’s equations.
are defined by changing “satisfies” to “does not The equivalence of these two alternative pos-
satisfy” and “no” to “some,” respectively. sible definitions of nonlocality, which is the es-
Two conceivable definitions of nonlocal theories sential basis of Fine’s claim, has no effect on the
are identified by the following two classes of generality achieved by definition (8). Simply de-
theories: fining a theory T to be nonlocal if it belongs to
Tnep =475 for some E, (E,T)E Cypp}, (7) glas.s TdNFD woluld Ill'?ct permitta.nyfclaim of ha\;ing
_ erived a nonlocality property of, say, quantum
7w = {75 for some £, (B,T)€C .} . (8) theory, with no explicit or implic,it ref’eience to
The final class is the one defined in this work. determinism or hidden variables. This definition
The other possibility uses the equations of Fine. depends on the concept of deterministic hidden
Fine’s argument claims that Coc is contained variables. What is needed is a conception of non-
in Cgp: CiocC Crp. This result is true: It fol- locality that makes no explicit or implicit ref-
lows immediately from the fact that if a set of erence to determinism or hidden variables, and
conceivable results R(E,T) satisfies the inde- which leads, via the conflict between (3) and (4)
pendence property (3), then the probabilities discovered by Bell, to a conflict between locality
generated by those results will satisfy the crucial and any theory that gives the quantum predictions
factorization property imposed by Fine’s equa- (4). Such a concept of nonlocality is embodied in
tions.* {This is the property that each of the four definition (8).
four-valued functions [AB(\), AB’'(\), A’'B()\), and The fact that this conflict between (3) and (4)
A’B’(\)] normally required to model such an ex- can also be formulated, as it originally was, by
periment be factorized into a product of two two- using deterministic hidden variables has no bear-
valued functions: AB(A\)=A(XN)B(\), AB’()) =A(\) ing on the fact that is essential for the kind of -
XB'(\), A'B(A\)=A"(A\)B(x), and A’B'(A)=A"(A) generalization being sought, namely that it is not
XB’(A).} It is easy to prove also that Cyp C Cioc, necessary to invoke determinism or hidden vari-
and thus derive Coc =C;p, and hence conclude ables in order to exploit the conflict between (3)
that Ty, =Tnrp. Thus the definition of nonlocal and (4).

1472



VoLUME 49, NUMBER 20

PHYSICAL REVIEW LETTERS

15 NOVEMBER 1982

The essential point is that there are no actual
mathematical conditions on the equations of Bell
from which the contradiction with quantum theory
arises that demand that the functions v ,,; (D ,,Dp)
and 75, (D,,Dp) in his proof represent the results
of the alternative possible experiments deter-
mined beforehand by some invisible variables.
Thus, from a mathematical point of view, the
content of his result is not well represented by
the words “deterministic hidden variable”: these
words are present, but there are no correspond-
ing mathematical conditions of “beforehandedness”
and “invisibility.” The aim of the generalization
is to exploit this fact, and show how to use Bell’s
mathematics without getting embroiled with these
irrelevant concepts of determinism and hidden
variables.

The formulation of nonlocality used here avoids
having to introduce the concept that all four al-
ternative possible results of the experiment be
determined beforehand by hidden variables. This
concept assigns definite results to experiments
that “could have been performed but were not.”
The need to use this contrafactual concept severe-
ly limits the scope of the theorem, in the form
originally put forth by Bell. The present formu-
lation asserts that a theory entails a nonlocal
connection if it makes statistical predictions,
and these predictions, by themselves, entail (in
some cases) that there is no way within the set
of all conceivable combinations of conceivable
results for the results in each region to be inde-
pendent of the choice made in the other region.
Quantum theory has such a nonlocal connection:
That is what Bell actually discovered. Tying this
discovery to the mathematically irrelevant con-
cepts of beforehandedness and invisibility ob-
scurs its logical essence, and needlessly cur-
tails its significance. The functions v ,; (D ,,Dp)
and 75; (D,,Dp) can more rationally be viewed as
defining the set of all conceivable combinations
of conceivable results.

The nonlocality property of quantum theory dis-
cussed here does not conflict with the micro-
causality property of quantum theory, which pre-
vents faster-than-light communication by means
of quantum observables.

As stressed in Ref. 3 the nonlocality property
of quantum theory does not necessarily entail
nonlocal influences: There appear to be two al-
ternatives. The first is a superdeterminism, in
which the choice of the experimenter is not ef-
fectively free: Some tight connection from their
common past binds the results in one region to

the choice of experiment in the other. The sec-
ond alternative, exemplified by the many-worlds
(or many-minds) interpretation of quantum the-
ory, exploits the fact that experienced worlds in
which the results in both regions are definite are
confined to the intersection of the forward light
cones from the two regions. A third alternative
is that the manifestly nonlocal character of

von Neumann’s process 1, unlike that of its
counterpart in classical statistical mechanics,
reflects the existence of subtle nonlocal influences
that are not evident at the level of probabilities
and averages normally dealt with by pragmatic
quantum theory and classical mechanics.

Note added.— Fine’s Comment® contains a de-
fense of his statement quoted at the beginning of
this paper. He certifies that the first part of that
statement means nothing more than the second.
He also admits that the second part contains
semantic irregularities. The reader is thus well
advised to examine carefully what was actually
proved in Fine’s paper, rather than trust impres-
sions created by this summary sentence.

Fine defends his position regarding locality by
claiming the existence of physically local models
that violate his condition (2). The violations of
(2) in the models he cites arise from faulty ex-
perimental design: The particles detected in
coincidence are not the ones produced in coinci-
dence. Consequently the experiments do not
measure the quantities that are the basis of Bell’s
theorem. They measure, instead, certain non-
local observables that depend critically on the
relative times of the detections of particles in
the two spacelike-separated regions. The factor-
ization property (2) cannot be expected to hold
for these nonlocal observables. In properly de-
signed experiments, such as the one described
herein, the particles produced in coincidence are
correctly tagged by signals originating from the
region where these particles are produced, and
there is, consequently, no dependence on the
nonlocal time-difference variables,

To prove nonlocality it is sufficient to consider
experiments that correctly measure the theoreti-
cal quantities dealt with by Bell’s theorem. The
experiments considered by Fine are therefore ir-
relevant, and Fine’s discussion of the obviously
false converse is likewise irrelevant. Thus no
rational justification of his position on “locality”
has been provided.

I thank Philippe Eberhard for many very use-
ful discussions. This work was supported by
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Constraints of Determinism and of Bell’s Inequalities Are Not Equivalent

Philippe H. Eberhard
Lawvence Bevkeley Labovatory, University of California, Bevkeley, California 94720
(Received 6 May 1982)

Arguments are given against considering Bell’s inequalities to be equivalent with de-
terminism, Possible misinterpretations of the conflict between quantum mechanics and
these inequalities are pointed out, With use of results obtained in previous papers on
this subject, it is shown that locality rather than determinism is the issue.

PACS numbers: 03.65.Bz

In a recent Letter,® the relationship between
hidden variables, joint probability, and the Bell
inequalities® was discussed, It was claimed that
an equivalence exists between the requirement
that the inequalities hold and the existence of a
deterministic hidden-variables model, It was
concluded that the inequalities impose require-
ments to make well defined quantities whose re-
jection is the very essence of quantum mechan-
ics. It is the intent of this paper to show that
such claims are likely to be misleading.

The context is a well-known quantum correla-
tion experiment.® There are two well-separated
regions of space, R, and R;. In R, (R z) two non-
commuting observables 4, and 4, (B, and B,) are
defined.* It is possible to measure simultaneous-
ly any of the four combinations of two commuting
observables, 4, and B,, A, and B,, 4, and B,,
or A, and B,, corresponding to probability dis-
tributions Pyy(4,B,), Po.(AB,), Pio(AB,), or
P,,(A,B,), respectively. These distributions are
functions of the values A,, A,, B,, and B; which
A,, A4,, B,, and B, can take. Central to the dis-
cussion is whether or not at least one positive-
definite function p(4,4,B,B,) exists with the fol-

. lowing properties:

P x(A B = 25 plAABB). (1)
A -J
-k
In Ref. 1, whenever such a function p(A4,A4,B;B,)
exists, it is interpreted as a joint probability for
the four observables 4,, 4,, B,, and B,. Then
it is correctly demonstrated that the existence
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of one or several such functions p(A,A,B,B;) im-
plies that the functions P ;; (A ; B,) satisfy Bell’s
inequalities and vice versa, if each of the ob-
gervables A ; and By is two-valued.® However,
other statements were also made,

Statement (a).—“The existence of a determinis-
tic hidden-variables model is strictly equivalent
to the existence of a joint probability distribution
p(A0A1BoB1)'”

Statement (a) is correct only if an unusually
restrictive meaning is given to the word “deter-
ministic.”® In general, determinism means that
the evolution of a system is determined by its
initial state and by its environment. Then, the
outcome of any experiment depends only on some
variables which specify the state of the system,
on the interactions with other systems, and on
all the apparatus that are connected to make
measurements. In this general sense, any prob-
ability distribution can be reproduced by a deter-
ministic hidden-variables model,” whether or not
Bell’s inequalities hold. Any computerized Monte
Carlo simulation is a deterministic hidden-varia-
bles model for the theory it simulates and there
is no limit to the kind of quantum mechanical
probability distribution the Monte Carlo technique
can reproduce. The Monte Carlo generation of
the results depends on the preparation of the sys-
tem, on its law of evolution, and on the entire
measuring apparatus. The generation of 4,in R,
when B, is measured in R ; may have to be dif-
ferent from the generation of A, when B, is meas-
ured in R ;. However, if the algorithm that gen-
erates the data is allowed to have enough mathe-



