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Successive Higher-Harmonic Bifurcations in Systems with Delayed Feedback
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The scheme of bifurcations in. systems described by a certain class of delay-differential
equations is investigated in detail. It is shown that higher-harmonic oscillating states ap-
pear successively in the course of transition to developed chaos. First-order transitions
between these states account for the frequency-locked anomaly recently observed by Hopf
et al. in a hybrid optical bistable device.

I'ACS numbers: 05.40.+j, 42.65.Bp

Among dynamical systems capable of displaying
chaotic behavior, systems with delayed feedback
are of interest since their time evolution is deter-
mined by a concurrence of a discrete step which
tends to induce chaos and a continuous step which
tends to smear it. A physical example of such
systems is an optical cavity filled with a non-
linear dielectric medium and irradiated with a.

laser light of constant intensity. Several authors
investigated the phenomenon that the transmitted
light from such a, cavity, a part of which is fed
back to the medium by mirrors, displays bistable
behavior" and chaotic behavior' ' under suitable
conditions. Other examples are found in neuro-
biology' and ecology. '

Recently, Hopf and others observed, in a sys-
tem equivalent to a nonlinear optical cavity, a
novel phenomenon they named frequency-locked
anomaly': In the course of transition from period-
ic states to developed chaos, there appear chaos
with traces of periodic structure and its higher
harmonics successively, being accompanied by

where p. is the bifurcation parameter. The sec-
ond term on the right side represents nonlinear
feedback with delay t~. For an optical cavity,
f(x; p) in Ecl. (1) takes the special form'

f(x; p) = ~ p.[1+2Bcos(x -x,)], (2)

where p, is proportional to the power of the inci-
dent light, and B (&1) represents the dissipation
of the electromagnetic field in the cavity. The
delay g~ is the time required for light to make a
round trip in the cavity.

discontinuous transitions between them. In this
Letter we investigate in detail the scheme of bi-
furcations on a delay-differential equation which
models the dynamics of the system and point out
that the above phenomenon is of universal charac-
ter in a certain class of systems with delayed
nonlinear feedback.

The delay-differential equation we investigate
is of the form

dx(t)/dt=-x(t)+f(x(t-t ); p),
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We first solved Eq. (1) with (2) numerically,
increasing p, slowly (d p/dt ( 5 x 10 ') from zero.
The other parameters were fixed at B=0 5 xo
= -~/2, and t~= 40 so that they can reproduce the
experimental condition of Hopf ef; al. The results
are summarized as follows. As p, exceeds the
critical value p~ =0.376, a square-wave solution
of period T, (—= 2t„) appears after the Hopf bifur-
cation of a stationary solution. With further in-
crease of p,, this square-wave solution undergoes
a sequence of bifurcations with its period dou-
bling itself successively. As p, reaches the
Feigenbaum point p. F ——0.696, the solution be-
comes chaotic. Coarsely seen, however, this
chaotic solution is still square-wave-like with
period T„as is shown in Fig. 1(a). In fact it ap-
pears that a small fluctuation is superposed on
the square-wave solution of period T,. As p, ex-
ceeds p, ~=0.775, this coarsely square-wave-
like solution also becomes unstable and succes-
sive bifurcations of a new type appear: The
period of the solution changes discontinuously
like T, - T,/3 - T,/5 - T,/7 with the increase of
p, (Fig. 1). Correspondingly, the position of the
highest peak in the power spectrum shifts discon-
tinuously like &u, (= 2n/T, —'= n/ta) —3e, —5&v, —7e,.
The solution of period T,/n (n: odd integer) is
thus regarded as a higher harmonic of the funda-

mental solution with period T,. These results,
including the critical values of p., reproduce the
frequency-locked anomaly observed by Hopf eE al.
fairly well.

The transitions between the harmonic solutions
are of first order, being accompanied by a hys-
teresis for slow increase and decrease of p.
This means that several harmonic solutions co-
exist as stable attractors for one value of p,.
Figure 2 shows an example of the domains of p.

in which the harmonic solutions exist and the hys-
teresis between them. The ordinate 0 represents
the mean frequency of the corresponding solution,
so that 0 =n holds for an ideal nth harmonic.
The branch of every harmonic consists of (pure-
ly) periodic and chaotic parts. With increase of

n, the domain of the harmonic becomes narrow-
er and shifts towards the higher side of p,. In
some cases, the destination of transition is not
unique; it depends sensitively on the velocity of
scanning of p, , especially in the downward tran-
sition.

The degree of the harmonic solutions realized
by increasing p. has its limit. (In Fig. 2, e.g. ,
it does not go beyond seven. ) When p. is further
increased, the harmonic solution of the maxi-
mum degree also becomes unstable, changing
to developed chaos showing totally complicated
time evolution. If p. is fixed at a certain value
slightly larger than p, ~ and t~ is increased, on
the other hand, the degree of the harmonics in-
creases without limit, going through every odd
number, as is shown in Fig. 3. In this case a
first-order transition occurs every time t~ is
increased by a def inite amount. The mean fre-
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FIG. 1. Successive higher-harmonic bifurcations for
B = 0.5, xp= 7l'/2, and t~ = 40: (a) fundamental (p
= 0.770), (b) third harmonic (p= 0.778), (c) fifth har-
monic (p = 0.780), and (d) seventh harmonic (p, = 0.822).

FIG. 2. Domains of several harmonic solutions and
hysteresis between them. The parameter values are
the same as those in Fig. 1. The solid lines and the
shaded parts indicate periodic and chaotic solutions,
respectively.
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FIG. 3. Successive higher-harmonic bifurcations
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quency 0 does not agree with the degree of the
harmonics precisely, because the solutions are
not purely periodic, but involve chaotic compo-
nents.

Figure 4 shows the existence domain of several
harmonic solutions in the parameter space (ts, p).
The boundary of each domain has two common
asymptotes, p, = p„and p, = p, B. For p, „&p, & p~,
a number of domains coexist, overlapping each
other. The domains intersect a line of constant
p, at regular intervals, so that the number of the
coexisting harmonics is proportional to t~. Fig-
ures 2 and 3 have been obtained by scanning pa-
rameters along the lines l, and l„, respectively,
in Fig. 4. Above p, = p, ~ the domains of harmon-
ics coexist with the domain of developed chaos
in a complicated manner, though not illustrated
in Fig. 4, so that the ninth and the eleventh har-
monics are not realized by increasing p. along l„
but rather the system breaks into a developed
chaos. ' For the fundamental solution with small
t~, there is no clear-cut boundary between the
coarsely periodic and the totally chaotic states.

The origin of the behavior mentioned above is
understood as follows. For large t„, Eq. (1) is
formally approximated by the difference equation

x(t) =f(x(f - f.); ) ) .
If the map x~„=f(x~; p) has a solution of period
2 satisfying x, = f (x„.p) and x, = f (x» p), then
it is clear that Eq. (3) has the solution x(t) =x,
for t E I '~ and x(t) =x, for i&1 '~", where I
=(f ', t ~"

) with t '=Pt„. The period of this
solution is 2t„, so that it corresponds to the
fundamental square-wave solution of Eq. (1). It
is not the unique solution of Eq. (3), however.
Divide the section 1 ~ into n subsections 1, ~)

tR

FIG. 4. Domains of the harmonic solutions in the
parameter space {tz,p). The other parameters are
fixed at pe = 0.5 and xp = —r/2.
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=(t ( ) +t„„t(~ ")] (n: odd), where (t, ] is an

arbitrary sequence of t satisfying 0 &t, &t, & ~ ~ ~

& t„,& t„. Then, the gener al solution of Eq. (3)
is given by the following: x(t) =x, for tEI», ('~)

I,„(' ") d (t)=, fo tel, „(")o I,„,(' "),
where 1 &k &(n+1)/2. We call this solution the
fissured solution of the nth degree. We remark
that there are infinite numbers of fissured solu-
tions of the same degree, because the number of
ways of choosing Lt„) is infinite. It might be con-
sidered that all of these fissured solutions have
their counterparts in the solutions of Eq. (1), or
in other words, that aQ of the fissured solutions
can be approximate solutions of Eq. (1). This is
not the case, however, for the following reason.
Equation (1) can be rewritten in the integral form

x(t) = J e (' 'f(x(s —t„); p, )ds, (4)

so that the value of x at t is determined by a
weighted average of J(x) in the vicinity of t —t„.
The case is different in Eq. (3), in which x(t) is
determined by only f(x) at t —ts. As a result of
this averaging, only the fissured solution having
some regularity in the intervals between t~ and

t~„, i.e. , the higher harmonic of the fundamental
square-wave solution, survives as an approx-
imate solution of Eq. (1). On the other hand,
when the division interval t„/n becomes smaller
than the averaging width of Eq. (1), which is of
the order of unity, the fissure structure is also
smeared out and can no longer be an approximate
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solution of Eq. (1). Thus, n has an upper limit of
the order of t~. This is the reason why the num-
ber of the coexisting harmonic solutions is propor-
tional to t~.

The above consideration is valid for any delay-
differential equation of the form (1), provided the
corresponding difference equation (2) exhibits
period-doubling bifurcations. To confirm this,
we made the same numerical simulation for the
following four functions f(x; p): (i) px(1-x),
(ii) ~(1-x'), (iii) tjxe ", and (iv) ~(1+x') '.
As was expected, structures of parameter do-
mains which are topologically equivalent to Fig.
4 have been found for all of these functions. A

remarkable fact is that the maximum degree of
the harmonic solutions realized by increasing p.

for fixed t~, n „, is about the same in all cases.
For example, we found n = 3- 5 for t„=20 and

g „=7for t&=40 in all cases. This tells us that
there may exist some quantitative universality in
the parameter dependence of the number of the
coexisting higher -harmonic solutions. Further
investigations will be reported elsewhere.
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fixed t~. The reason for this disagreement with the
numerical results is not clear.
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Bell's theorem is formulated as a nonlocality property of quantum theory itself, with
no explicit or implicit reference to determinism or hidden variables. A recent Letter
on this subject is discussed.
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In a recent Letter' related to Bell's theorem'
Fine proved several propositions, and asserted
the following conclusion: "Proposition (2) shows
that, despite appearances, no significant general. -
ity is achieved by those derivations of the Bell/
CH inequalities that dispense with explicit ref-
erence to hidden variables and/or determinism:
The assumptions of such derivations imply the
existence of deterministic hidden variables for
any experiment to which they apply. "

This conclusion consists of two assertions,
which must be distinguished. The second is
meant to be a rephrasing of proposition (2), and,

as such, is technically correct. However, it is
misleading because of two semantic irregular-
it)es: (1) Fine leaves the word "local" out of his
name "deterministic hidden-variables models. "
Usual. ly this word is inserted to remind the read-
er that the model. s in question have an important
factorization property that normally arises from
the idea that the deterministic hidden variables
are separated into two local parts, each of which
determines those results of the experiment that
occur in one of two separated regions. (2) Fine
leaves the word "model" out of the rephrasing.
This creates the impression that what was proved
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