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retical approach, where, by using the pseudo-
potential scheme, oscillations near the core re-
gion are taken out and the profiles are underesti-
mated for large ¢ and overestimated for small ¢.

In conclusion, except for a small directionally
independent difference which can be reduced by
approximating correlation effects, this is the
first time that the calculated and observed Comp-
ton profiles of beryllium are in excellent agree-
ment. This calculation can serve as a model for
other systems both to assess the accuracy of one-
electron schemes and to estimate the effects of
electron correlation.
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Elementary Excitations of a Linearly Conjugated Diatomic Polymer
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The low-lying particlelike excitations of a model linearly conjugated diatomic polymer,
+.A=B¥,, are found to be pairs of either spin-0 or spin-} solitons with irrational charge
values. The charge values and excitation energies are calculated as functions of the dif-
ference of the energy levels of the atomic p orbitals of the two atomic constitutents of the
unit cell. The phonon spectrum of the uniform polymer is also calculated.

PACS numbers: 72.80.1e, 72.15.Nj

We have extended the soliton model of polyacet-
ylene'™ to study theoretically the ground state,
phonon spectrum, and possible soliton excitations

of a linearly conjugated diatomic polymer, {A
=B}, , as a function of the difference Ra=E,
—E ) of the energy levels of the atomic p orbitals
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of the two atomic constituents (A and B) of the unit cell. An example of such a polymer is polycarbon-
itrile, 4CH=N3,, or one of its several derivatives.® We find that the lowest-lying particlelike excita-
tions of the dimerized polymer are pairs of either spin-0 or spin-3 solitons with i»rational charge val-
ues.

Our model polymer is defined by the Hamiltonian

H=Hp+a);; 4a; o'a; o=23; otji1 ;05 60,41 o+H.c.)
—azl.cbl,ofbl,c—El,c(tHl,lbl,cTal+1.0+H'c') (1)
describing a diatomic linear chain of N/2 (N —~«) atoms of type A (odd sites, labeled by j) and N /2

atoms of type B (even sites, labeled by ), in which

HL=%MIEJ~1:¢J»2+%MZZ;,3;12+ (K/Z)Z;; (3’j+1"uj)2+ (K/z)Zz (u1+1‘y1)2 (2)

denotes the lattice energy and

tisr,g =to=vWjeri=u;),

Lii =to=vW,—9;) 3)
the hopping integrals for the transfer of a 7 elec-
tron between neighboring sites. In (1) a; o7, a; 4
and b; ,7,b; , are fermion creation and destruc-
tion operators for a 7 electron with spin o at the
A and B atomic sites, respectively. In (2) and
(3) u; and y, denote, respectively, the displace-
ments of the jth A atom and the /th B atom from
their respective equilibrium positions in a uni-
formly spaced diatomic chain of lattice constant
2a. K denotes a harmonic spring constant, M,
and M, the masses of the A and B atoms, respec-
tively, ¢, the hopping integral characteristic of
the uniformly spaced chain, and y the derivative
of ¢;,, ; with respect to the intersite separation.
The electronic energy is measured relative to
the total atomic orbital energy (N/2)(E , +E z) and
it is assumed that there is one 7 electron per
atom.

We discuss first the ground-state properties
and the phonon spectrum. In general, when we
treat the atomic displacements as a classical
field, the ground state of (1) is an insulator pos-
sessing a spontaneous (Peierls) dimerization
with a ground-state displacement field y; = -u, ‘

=+w/2 (all j and I) where w is a constant. The
spectrum of 7 states is I, ==E, =+[a?+A?sin(ka)
+e,22]1/2 with — (7/2a) <k <(7/2a), where €,
=2t,cos(ka) and A =2yw. The lower (valence)
band is completely filled while the upper (conduc-
tion) band is empty. The energy gap at the zone
edges isE, = 2(a?+A2)Y2, The constant w, or
equivalently, the dimerization contribution A to
the gap, minimizes the total ground-state energy

E=WN/2)K/%*A%~2., o' Ey,
i.e., A is determined as the solution of
1=(4*/KN)}, o sin*(ka)E, ", (4)

where the primes on the summation symbols in-
dicate summation over occupied states. Since the
atomic level E ,#E 5 a “charge transfer” 2e¢* be-
tween the A and B atoms is a characteristic prop-
erty of the ground state. With the definition that
2¢* is the ground-state expectation value of

lel 22 by, chz, o T 04, oTa1+1, o), we find

e*/ez(a/N)Zk,alEk-ly

where |e| denotes the magnitude of the charge, e,
on an electron. When we take into account the
adiabatic polarization of the 7 electrons to second
order in y, the phonon dispersion, ©(qg), is given
by det| D(g) - Q%q)I || =0, where

Dy = ,M ;) V26, (2K - 8y%,(q)] + (1 -8, )[2K cos(ga) - 8y%,(q)]} . (5)

In Eq. (5) the m-electron contributions are obtained from

Xi(4)=N-12;z,osi(k’k‘*'Q)F(k,k‘*'Q)/(Ek-m +E,),

where
F(k,k/)=1+(az+€k€k' _Azzkzk')/(EkEk,)’
z, =sin(ka), and

s1(k k' )=2,2 42,2, s,(k,k')=22,2, .
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(6)

l With the employment of the representative val-

ues /,=3 eV, K=68.6 eVA~2 andy=8 eVA"!,
which yield a Peierls gap 2A; =1.4 eV for the
case =0, we have numerically calculated A, e*,
and the phonon spectrum as a function of a/AO.
The results are shown in Figs. 1 and 2, where in
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FIG. 1. The dimerization gap A and charge transfer
2e* as functions of o /A,.

Fig. 2 we have employed values of M, and M, ap-
propriate for {CH=N},. The results show that a
spontaneous lattice dimerization occurs only for
0<asA,, and that the functional form of A close-
ly follows A =(A 2~ @?)'2, The latter form is in
fact the solution of (4) in the limit of weak intrin-
sic electron-phonon coupling, i.e., (A,/2t,) <1.
Figure 2 shows that the optical branch of the pho-
non spectrum, Q, (q), develops a giant Kohn
anomaly in the critical region |a —A | ~0, al-
though, interestingly, there is always a gap
(~2a) in the electronic 7 states. This is a con-
sequence of the property that the restoring force
for long-wavelength optical displacements is, for
a <A,, purely electronic in origin and proportion-
al to the square of the amplitude of the off-diagon-
al charge density: Evaluation of (5) and (6) in the
limit (& ,/2t,) <1 yields M Q,%(0) = (8y2/mt )A /A ,)?,
where M =M ,M,/(M,+M,) is the optical mass.
The critical behavior of £, (0) as a function of
a/A, is sketched in the inset in Fig. 2.

We now consider the possible soliton excitations
of the polymer. These may be investigated with
the use of the continuum methods employed by
Brazovskii® and by Takayama, Lin-Liu, and
Maki* for the polyacetylene problem. As the
relevant analytical derivations are lengthy we
shall restrict the analysis in this Letter to a
statement of the fundamental system of equations
and discussion of the salient results. In the con-
tinuum limit of the Hamiltonian (1), which pro-
vides an accurate description of the inhomogene-
ous polymer for A /2t <« 1, we find that the one-
electron eigenstates €, and the local dimeriza-
tion gap A (x) are determined by the simultaneous

2000 T
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FIG. 2. The phonon spectrum as a function of . The
acoustic branch is only weakly dependent on «.

equations (7=1)
(€, —a)A, (x)=[=ivpV +ia(x)]B, (x),
(€, +a)B,(x)=[-iv v, —ia(x)]A, (x),
A (x)
=- (&%ai/K))S, o/ [A,*&)B, (x)-c.c.], (Tc)

where the eigenvector corresponding to €, is the
spinor ¥(x)=(A4, (x),B, (), normalized accord-
ing to fdx\Ifn*(x)\If,,(x)= 1, vp=2ta, and L =Na
—~o, The total energy of the polymer is

E=T o 60+ /0 [0 @x/2an),  (8)

while the local mean charge density is p(x)
=€), o ¥, *)¥, (x). These equations apply for
the case of a static inhomogeneity. The ground-
state solutions of Eqs. (7) are plane waves with
€,=+E, =% (®+A%+0,%?)"? and A =+ (A 2 - @?)!/2
for a<A and A =0 for a>A,. (Here, and in the
following paragraph, the wave vector & is meas-
ured relative to the zone edge 7/2a.)

For A <A, we find that Eqs. (7) possess the
exact solitary-wave solutions A (x)=+A tanh(x/¢)

(7a)
(Tb)
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with { =vz/A. The first of these, which we des-
ignate A, is associated with an eigenspectrum
consisting of a single bound state € ,=« (lying
precisely at the atomic level A) with wave func-
tion A j(x) = (26)71/2 sech(x/t), B,(x)=0, and a
spectrum of plane wave states €, =+E, (k# 0) that
are phase shifted in the region of the soliton dis-
tortion. The second solution, which we designate
B, is associated with a similar spectrum of
phase-shifted plane-wave states and a single
bound state €,=— a (lying precisely at the atomic
level B) with wave function A (x)=0, B,(x)
=(2¢)"Y2sech(x/Z). The interesting aspect of
these solutions is that they lead to local deficien-
cies in the continuum states which differ from
unity by an irrational fraction f. The bound state
€,=—a, which lies closer to the filled valence
band than the empty conduction band, removes
(1 +f) of a state per spin from the former band
and 3(1 - f) of a state per spin from the latter
band. For the bound state € ,=«, the deficiencies
are interchanged.® Two consequences immediate-
ly follow. First the soliton excitations must al-
ways occur in the form of pairs of (widely sep-
arated) A and B solitons which remove precisely
two electrons from the filled valence band. Sec-
ond, independently of the occupation of the bound
states, the solitons will always carry a net ir-
rational charge. If we denote the occupation of
the state €,=«a by v, and that of the state ¢,=- «
by v_=2-v, the possible charge and spin values
of the solitons are @ =te(v. -1~ f) and s=+3v_(2
—-v.), respectively. An analysis of the phase-
shifted continuum states yields f=1 - (2/m)tan"1(a/
a). Moreover, the energy required to excite an
AB soliton pair, 2E (v, ,v_), may be computed
from Eq. (8) with the result

2E ((v,,v.)
=(4/7)a —atan™'A /a) |+ d2+v, —v_).

We note that 2E ((0,2) and 2E ((1,1) are always
less than the electron-hole pair threshold 2(a?
+A2)"2=2A . The formation of the soliton pairs
is schematically depicted in Fig. 3(a).

We may conclude, therefore, that the lowest-
lying charged excitations of the dimerized poly-
mer are pairs of spin-0 solitons with charge &,
=+e(2/m)tan™ (A /&) and excitation energy 2E (0,
2)=(4/m)[a - atan"'(A /a)], while the lowest-
lying magnetic excitations are pairs of spin-3
solitons with charge @ ,=Fe(2/7)tan™'(@¢/A) and
excitation energy 2E(1,1)=2E(0,2)+2a. In
Fig. 3(b), these charges and excitation energies
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FIG. 3. (a) Formation of the (lowest-lying) A8 soliton

pair (schematic), and (b) the charges and excitation en-

ergies of the spin-0 and spin-} solitons (see text).

are plotted as a function of @/A,. We note that as
a-A,, both @, and E ;(0,2)~ 0, while @,~+e and
E (1,1)—~ a, corresponding to the excitation of an
electron-hole pair.

Finally, we note that since E (2,2)=E ,(1,1)
<A, the addition of a pair of electrons to the di~
merized polymer at 7 =0 will lead to the spontane-
ous creation of an AB pair of spinless solitons
with charge @ , = (1+ f)e on the A soliton and
charge @5 = (1= f)e on the B soliton. In the hypo-
thetically doped polymer such solitons would lead
to separate intragap absorptions at Zw=4A,- o
and 7w =A +a and the difference in their charges
might also lead to separate vibrational bands in
the infrared.

We thank H. W. Gibson, A. J. Epstein, C. B.
Duke, and W. K. Ford for a discussion of hetero-
polar polymers.
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Introduced here is a model of the early universe based on the possibility of a first-
order phase transition involving gravity, and arrived at by a consideration of instabili-
ties in the semiclassical theory. The evolution of the system is very different from the
standard Friedmann-Robertson-Walker big-bang scenario, indicating the potential im-
portance of semiclassical finite-temperature gravitational effects. Baryosynthesis and
monopole production in this scenario are also outlined.

PACS numbers: 98.80.Bp, 04.60.+n, 11.30.Qc

The rapproachement between particle physics
and cosmology cannot be complete until quantum
gravity is fully understood, when it will be possi-
ble to trace quantitatively the big bang to times
~toanck (=5.4X107* g), Developments in particle
theory, however, have motivated a consideration
of periods shortly thereafter. Not only might one
explain such fundamental quantities as the ob-
served baryon-to-photon ratio,* but the early uni-
verse may have undergone phase transitions dur-
ing which its dynamics may have differed greatly
from that of the adiabatic Robertson-Walker
model.? Thus the early universe can Serve as a
laboratory in which to test our models of particle
interactions at high energies. In particular, the
resolution of various problems of cosmology may
be tied to understanding the peculiarities of grav-
ity as a field theory.

The model I present, based on treatment of
classical gravity as a remnant of a phase transi-
tion, is somewhat speculative and preliminary,
but illustrates several important aspects of such
an approach: (1) The attempt to couple quantum
mechanics and general relativity is strongly tied
to thermodynamics. Resulting effects will be
important in the early universe, and need further
investigation. (2) Quantum, or semiclassical,
gravitational effects may be relevant at tempera-
tures below the Planck temperature.

© 1982 The American Physical Society

Specifically this model indicates that after such
a transition the temperature of space may have
always been lower than the critical temperature
for restoration of grand unified gauge symmetries.
At the same time it may be possible to generate
the observed baryon excess while suppressing
monopole production. I here briefly outline these
results, leaving more detailed discussions to a
future paper.

Although they present some problems, first-
order transitions may play a crucial role in
early-universe dynamics, perhaps resolving sev-
eral paradoxes of the standard Friedman-Robert-
son-Walker adiabatic model. Indeed, given the
possibility that baryon number may not be con-
served, all the observed matter and entropy of
the present universe may have been generated in
such a transition.? Thus the big-bang explosion
itself may have been the result of a first-order
phase transition. In an earlier article® I suggest-
ed that it may be feasible to connect such a possi-
bility to the nature of classical gravity. The
gravitational Lagrangian with its dimensional
coupling K=(167G) ™" ~ O(m py snerc %) has the form
of a nonrenormalizable low-energy effective
interaction in an expansion in inverse powers of
a large mass scale at which some heavy degree
of freedom is frozeun out. In this sense it re-
sembles the Fermi weak effective Lagrangian,
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