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Fractal (Scaling) Clusters in Thin Gold Films near the Percolation Threshold
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Transmission electron micrographs of thin evaporated gold films were analyzed by
computer. For length scales above 10 nm, the irregular connected clusters show a
perimeter linearly proportional to area. Near the percolation threshold the large-scale
power-law correlations and area distributions are consistent with the scaling theory of
second-order phase transitions. Geometrically, the boundary of all clusters is a fractal
of dimension D = 2 while individual boundaries are of fractal dimension D& = 1.9.
PACS numbers: 71.80.+h, 05.40.+j, 61.16.Di

A random mixture of conducting (fraction P)
and insulating (fraction 1-p) material abruptly
exhibits long-range conduction at a critical con-
centration p =p, . This simple percolation prob-
lem' is ideally suited to computer modeling, ' '
and mathematically equivalent to a second-order
phase transition. ' The rich variety of universal
"scaling" behavior near p, is reflected in the
irregular shapes of the connected clusters. Until
recently' statistical studies of cluster geometry
were limited to computer simulations. Converse-
ly, experimental studies of actual materials'
have been based on conductivity measurements
(in spite of the availability of micrographs). In

this Letter we present detailed experimental re-
sults on the cluster geometry of thin gold films
near p, taken from digitized micrographs. Al-
though local Au-Au and Au-substrate correlations
during deposition alter p„wefind the large-
scale properties to be consistent with both scaling
theory and computer simulation. Thus, the
metal-insulator transition in actual films can be-
long to the same universality class as the ideal-
ized percolation problem.

A mature, analytic scaling theory' exists for
the percolation transition. Power -law relation-
ships extend over length scales that vary from
the model lattice spacing to the correlation length

Near p„(diverges as ~p -p, ~

'. The char-
acteristic exponents, however, fail to provide an
intuitively satisfying description of the intricate,
seemingly biological, cluster shapes. Mandel-

brot's fractal geometry, ' on the other hand,
offers a natural description in terms of the
fractal dimension D of the collected cluster
boundaries and the dimension D~ of an individual
cluster boundary. Fractals provide an intuitive
geometric basis for the scaling behavior, as well
as specific geometric models'" for analytic cal-
culations. We shall, therefore, discuss our
measurements in terms of both scaling theory
and fractals.

The thin Au films were made at room tempera-
ture by electron-beam evaporation onto 30-nm-
thick amorphous Si,N4 windows grown on a Si
wafer frame. The deposition rate was 0.5 nm/
sec at abase pressure of 2&10 ' Torr. Sample
thickness was systematically varied with a mov-
ing shutter to produce simultaneously a range of
samples from 6 to 10 nm thick that varied from
electrically insulating to conducting. Transmis-
sion electron micrographs were digitized with a
scanning microdensitometer (typically on a, 512
x 512 grid). Figure 1(a) shows a halftone repre-
sentation of one of the digitized images. The
structure within each cluster is due to the Au

grains. With use of threshold detection and an
optimal connectivity-checking algorithm the in-
dividual Au clusters were isolated for statistical
analysis. In Fig. 1(b) the three largest clusters
from Fig. 1(a) are darkest while the remaining
clusters are a uniform light gray. At a fraction-
al Au coverage p =0.64, Fig. 1(b) is below p, and
the extent of the largest clusters is less than the
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FIG. 1. (a) Halftone representation of a digitized Au

cluster transmission e1ectron micrograph. (b) Con-
nectivity analysis of (a) with p = 0.64 with the largest
clusters shown darkest. (c) Au clusters with p = 0.75.
(d) Au clusters with p = 0.71 at a factor of 3 lower mag-

nificationon.
A (nm)
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FIG. 2. (a) Perimeter P vs A for the Au clusters at
different fractional coverages p. The solid line shows
the expected P ~A at large A. (b) N(area) A) vs A at
the same p. The solid line shows the expected A ~.

dependence at p, .

field of view. Figure 1(c) with p =0.75 is just
above threshold and the largest cluster "connects"
all sides. Figure 1(d), at a factor of 3 less mag-
nification, demonstrates the shape of a very
large cluster, with p =0.71, just below p, .

The Au clusters in Fig. 1 are irregularly
shaped, "stringy" or "ramified, "and certainly
not describable as simple Euclidean shapes. Over
large scales (&100 nm) the film properties, such
as fractional coverage, are uniform. At small
scales, however, the Au forms 8-20-nm-wide
"sausages" with a 4-8-nm spacing. This metal-
insulator asymmetry is presumably due to the
initial mobility of the deposited Au atoms com-
bined with surface tension effects. One major
consequence is that p, is about 0.74+0.01, high-
er than the 0.5 to 0.6 expected from simple two-
dimensional lattice models. ' This effect also
sets a lower cutoff (~10 nm) for any scaling prop-
erties (similar to a simulation lattice size).

Figure 1 also demonstrates that even when a
cluster extends to large distances it remains
loosely connected and all points are actually with-
in 10 nm of a boundary. As first suggested by
numerical simulation' and later proved rigorous-

ly, "the ramified nature of percolation clusters
results in a perimeter I' that scales linearly with
area A for large clusters. Figure 1(b) also sug-
gests a clustering of the largest Au clusters.
The I' ~A dependence is a plausible consequence
of large cluster growth by the development of
small connecting necks to neighbors. Figure 2(a)
shows a scatter plot of P (defined as the number
of unoccupied sites on the digitized grid adjacent
to a given cluster) as a function of A for some
of the films studied at various p. Each point rep-
resents one cluster. At large scales (A &600
nm') we find the expected P ~A for all p. A pro-
nounced change from this behavior is, however,
seen at small scales. Local correlation gives
the smallest clusters (A (250 nm') simple, al-
most circular shapes with I' ~A'~'.

Figure 2(a) can also be interpreted geometrical-
ly. The topologieally one dimensional cluster
boundaries are characterized by a fractal dimen-
sion D with 1 &D -2. D intuitively measures the
degree to which the boundaries "fill the plane. "
The requirement of uniform properties over
large areas leads naturally to a dimension d (the
Euclidean dimension) =2 for the clusters them-

1442



VOLUME 49, NUMBER 19 PHYSICAL REVIEW LETTERS 8 NOVEMBER 1982

selves. The clusters, however, are highly ram-
ified. At large scales they are all boundary and
the fractal dimension D of the boundaries (nor-
mally d —1 for simple Euclidean shapes) becomes
the same as that of the clusters, D=d=2. In gen-
eral, Mandelbrot' has shown that fractal objects
in the plane with boundary dimension D satisfy
& O=A ~'. This relation was recently used by
Lovejoy" to estimate the fractal dimension of
cloud and rain area boundaries. Here, the rela-
tion immediately yields the observed I' ~A de-
pendence as a consequence of the ramified,
"space-filling, " nature of the collected cluster
boundaries with D=2. At small scales the almost
circular clusters have a boundary D = d —1 = 1
and I' ~A'~'.

The scaling theory of percolation' is based on

n„(p), the average number (per lattice site) of
clusters of area A as a. function of p. At p, there
is no characteristic size scale and is~~A '. The
exponent satisfies T = 2+1/5~2. 05 in two dimen-
sions. Similarly, the Korcak-Mandelbrot em-
pirical law' for the distribution of islands on the
earth's surface states that the number of islands
with area greater than some size A obeys N(area
&A)~A ~. Mandelbrot' explains this law by show-
ing that, for a scaling system of islands where
the combined coastlines are a fractal of dimen-
sion D, the number of islands with characteristic
length A. &L obeys N(A &L)~L ~. For simple in-
dividual islands with area ~A.' we have N(area
&A)~A ~~' for the distribution. In cases (such as
percolation) where each island or cluster is itself
a scaling shape, the dimension of an individual
cluster boundary satisfies Dc &D. Consequently, '
area ~A~& and N(area&A)~A ~ ~~. Since N(area
&A) is the integral of n~ above, scaling theory
with n„~A 'corresponds to N(area&A)ccA' 'and
D/Dc = v —1 = 1.05.

Figure 2(b) shows N(area. &A) vs A for the same
films as Fig. 2(a). The direct display of N(area
&A) eliminates the problem of choosing appro-
priate bin sizes for a histogram of n~(p). For p
well below p„N(area&A) decays rapidly for A

beyond some characteristic size g. For p well
above p„N(area&A) becomes independent of A

at large A. Near p„however, N(area&A) is
consistent with the expected A '" dependence
for a large range of A.

Second-order phase transitions have power -law
(rather than exponential) correlation functions at
the critical point. ' The probability, g(R), that
two points separated by a distance B are in the
same cluster takes the form g(R) ~R "at p, .
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FIG. B. (a) The probability g(R) that two points sep-
arated by a distance R are in the same cluster. (b) The
fraction of squares of size X crossed by the boundary
of the largest cluster f, (A) as a function of A. . In both
cases solid lines show power-law fits near p, .

Figure 3(a) shows the measured g(R) for the Au
films at different p. For p & p„g(R)decays
rapidly at large R while for p &p„g(R)approach-
es a constant. At p =0.707, below p„g(R)shows
a large power -law section with g = 0.44 + 0.07 but
decreases more rapidly for R & 500 nm. At p
=0.752, on the other hand, just above p„g(R)
remains very close to a power-law form with g
=0.17+0.02 with a flattening just discernible at
the largest R. The measured g(R) is thus con-
sistent with an accepted' q =0.2 at p, .

The universal exponent g is related to the clus-
ter density profile, to the scaling of the largest
cluster at p„and, consequently, to Dc. In par-
ticular, '~"'9 D~ = 1+ (d —q)/2 =d/(1+ 1/5) =d —P /v
~1,9 for d=2. Figure 3(b) shows a direct esti-
mate' of Dc through the variation in cluster shape
with the minimum resolved length A. in the image.
If the entire image of size I- xI- is divided into
(L/A. )' squares of side A, a Dc-dimensional object
will intersect of order (L/A)~ squar. es. Thus,
the fraction of squares intersected by the bound-
ary, f, (A), will vary as X' '. For p &p„Fig.
3(b) shows that f, (A.) - A.

' at large A. and all finite
boundaries look pointlike (Dc -0) at large scales.
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&t large p a,nd A. , f, (A.) —A.'. Near p„however
f, (A) does scale as A.

' ~~ with Dc~ 1.78 at p = 0.707
below P, and D c ~ 1.92 at P = 0.752 just above P, .
At small scales the correlated behavior with sim-
ple D~=l boundaries is again visible as f, (A) o-A. '.
Near p, this measured Dc agrees with the ti in

Fig. 3(a) and the scaling relation 2-Dc=ted/2 and
demonstrates experimentally the equivalence of
the fractal analysis to the scaling exponents.

In conclusion, we have demonstrated that com-
puter analysis of digitized micrographs can yield
the high-tluality statistics previously available
only in simulations. We have used this technique
to show that the large scale properties of actual
Au films near the percolation threshold are con-
sistent with random percolation. Local Au-Au

and Au-substrate correlations, however, set a
lower cutoff to the scaling behavior and raise p, ."
Finally, we have presented our measurements in

terms of both standard percolation theory' and

fractal geometry' and have demonstrated that the
equivalence between the analytic' and geometric'
scaling interpretations extends to actual metal
films.
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sample preparation and to B. B. Mandelbrot,
S. Kirkpatrick, Y. Imry, and Y. Gefen for illum-
inating discussions and helpful suggestions.
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The geometrical features of discontinuous Pb films are analyzed in terms of the scaling
theory of percolation. Above the percolation threshold it is shown that the infinite cluster
as well as the backbone has an anomalous mass distribution up to a length of the order of
the percolation correlation length ((&), corresponding to that of self-similar objects.
Above ]&, the mass distribution is homogeneous. Below the percolation threshold, the
cluster statistics agrees with scaling theory.

PACS numbers: 78.90.+f

The physical properties of thin mixture films
have been investigated extensively in recent
years, usually with metal and insulator coevapor-
ated or cosputtered to form a metal-insulator

mixture film. ' A considerable amount of work
has been done on the transport properties of such
materials, most of the results reported being
consistent with the predictions based on percola-
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