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A new theory is presented to determine the structure of the intrinsic density profile of
the liquid-gas interface near the critical point. A nonlinear integral equation for this
profile is derived and it is shown that a nontrivial solution branches off at the critical
temperature. The scaling form and the asymptotic behavior of this solution are derived
exactly: The wings of the intrinsic density profile decay exponentially with an exponent
proportional to the inverse correlation length, confirming the conjectures of Widom.
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There is considerable modern work in the sta-
tistical thermodynamics and statistical mechanics
of nonuniform systems,' and the foundation for
much of this work has been van der Waals’s the-
ory?® of the critical liquid-gas interface. However,
this theory, as well as its various rederivations?®
or extensions,* is open to criticism at a funda-
mental level.®

A basic assumption of the van der Waals theory
is that there exists an intrinsic structure of the
interface definable without reference either to the
actual interfacial area or to an external field such
as gravity. According to the scaling ideas of Wi-
dom® the thickness of the critical intrinsic inter-
face is proportional to the correlation length of
the density fluctuations in either bulk liquid or
gas phase. Other intrinsic interfacial structures
which are not of this form have recently been
proposed.”

The very idea of a density profile is contradict-
ed by the capillary-wave model,®®° according to
which the thickness of the interface of a d-dimen-
sional fluid (d < 3) diverges at the thermodynamic
limit as the external field (gravity) tends to zero.®
In spite of these divergences induced by the capil-
lary waves, it is nevertheless reasonable to be-
lieve that there is some structure of the interface
which is an intrinsic property of the phase equilib-
rium: This intrinsic structure manifests itself,
for example, in the surface tension, to which cap-
illary waves contribute very little.'°

This Letter describes a new microscopic ap-
proach to the problem of the structure of the crit-
ical liquid-gas interface. Contrary to the theory
of van der Waals and its rederivations or exten-
sions, no use is made here of the metastable and
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unstable portions of the Andrews-Thompson iso-
therm'! or of the equivalent mean-field approxi-
mation'?; moreover, no use is made of scaling
and homogeneity conjectures®!? or of local ther-
modynamic* or local density'® arguments.

We first derive a nonlinear integral equation
for the structure of the intrinsic density profile
near the critical point. This equation brings in
the direct correlation functions of a uniform
fluid, which are related to those of the bulk liquid
and gas phases. We then show that for any value
of the temperature, the associated linearized
equation admits only the trivial solution describ-
ing a spatially uniform phase. It is therefore
necessary to study the effect of the first nonlinear
terms of the integral equation.

A study of the nonlinear equation shows that a
nontrivial solution bifurcates, at the critical
temperature, from the trivial solution. In the
Ornstein-Zernike approximation for the direct
correlation functions of the uniform fluid, both
the scaling form and the asymptotic behavior of
the intrinsic density profile can be derived ana-
lytically.

We now sketch the derivation of our regults.
To be consistent with the lattice-gas syrﬁ‘metry,
the mean global density g, which is fixed, is
chosen to be equal to %(PLMOG). It is convenient
to introduce the dimensionless quantity ¥ (z)
=[p(z) -p]/p; ¥ vanishes when only one phase is
present; and, provided p is equal to the critical
density of the fluid, ¥ is small when liquid and
gas coexist at a temperature 7 slightly below the
critical temperature 7,. Considering the free
energy F as a functional F[¥] of ¥, the latter
can be expanded, in the critical region, in powers
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of ¥. Making then F|[¥] extremal with respect to ¥ gives, up to terms in ¥3, our basic equation:

Wa)=p [ ez, 2")¥(z")dz’ ~ $8%(2)

+L—3f+°°f+w *e ( ’ n mYY (2 Y (z " Y(z2")dz'dz"dz "™
P L Jowea(z, 2", 2", 2™ )U(2 ) U(2 " ) (2" )dz ' dz " dz "

The functions @, and g, are the two- and four-
point direct correlation functions C, and C, of a
uniform d-dimensional fluid of density p, inte-
grated over the transverse coordinates; e.g.,

ey (2)= 110 dx, [ dx, -1 dxg., Co(7), with r=
(%1, Xope o o 5 X4-1, 2). These functions are invariant
under translations of all their arguments and
vanish when the distance between any two of their
arguments tends to infinity,'® Terms even in ¥
do not appear in equation (1): Their presence
would prevent Eq. (1) from admitting odd solu-
tions ¥ consistent with the lattice-gas symmetry.

Equation (1) can also be derived from an exact
relation'” which links the one-point distribution
function to the two-point direct correlation func-
tion.

No use is made of the loop of the Andrews-
Thompson subcritical isotherm; but when the lat-
tice-gas symmetry is taken into account and F
is chosen to be, in the two-phase region, the con-
vex linear combination of the free energies of the
bulk phases, the function C, is expressible in
terms of the direct ¢orrelation functions of the
bulk phases and is identical to the one which is
obtained by a smooth extension from the pure
phase.

The intrinsic density profile is given by that |

A

(1)

solution ¥ of Eq. (1) which satisfies the two
boundary conditions lim, , ,¥(2)=F(p,—-p)

/o, +pg). The linearization of Eq. (1) reads
¥(z)= p(e,*¥)(2), where the asterisk denotes
convolution. For T#T_, this equation does not
admit a nontrivial solution satisfying the bound-
ary conditions. It is therefore necessary to take
the nonlinear terms of Eq. (1) into account.

The unknown ¥ is now split into w + 4, where
nz)=—sgn(2)(p,—p)/(p,+py). w(z) denotes the
wings of the density profile; under the assump-
tion that the temperature dependence of p, —p,
is given, w is then the unknown to be determined.
We define the quantities

t:(Tc- T)y’ pL"pczAtb’ I—Féz(()):Atc,

S= L:o dz 22€C,(z),

with constants y, A, b, A, ¢, and S>0. The
caret denotes the Fourier transform.

The next step is to define new unknowns %, and
a by u,(2)=t"*w(z/t), with a>0. If one considers
{ small and assumes Ornstein-Zernike forms for
e, and €,, the nonlinear integral equation (1) for
¥ is turned into a nonlinear differential equation
for u, .'"® For z >0 this equation reads

“S 12 Az - - atb= f2a=
P35 U (z)= <Zl3_§t2b 24 ALC 2>ut (z)—<2—5t 4 2>ut 2(z)+ (312972, 3(z)

(2)

The details of the derivation will be given elsewhere. In the limit as f - 0 under the conditions a=b=c/
2=1 which are the only ones appropriate for a nontrivial limiting equation and allow our bifurcation ap-
proach to be used, Eq. (2) becomes

B(S /2N, (2) = (N2/4P% +4 Juy(2) = (A /2D 2(2) + 51 (2). (3)

For small values ¢ the wings of the intrinsic pro- |
file are given by

w(z)=t"u,y(tz). (4)

+higher order terms in ¢ .

stein-Zernike approximation y/2=v, with y and
v the critical exponents of the compressibility
and the correlation length, respectively. Further-
more when 3, the exponent of the order param-
eter p; — pg, assumes its classical value of %,
Eqgs. (5) and (6) show that v is also equal to its
classical value of 3.

Now Eq. (3) admits the exact solution

(2) = 0K exp(—Fl/zz)
%)= 5 TN /20 + K exp(= T2z 2 ?

The condition a=b gives

1 ~py = pg (5)
with @ =1; the condition ¢/2=1 gives

t~¢h (6)
Result (6) follows from the fact that in the Orn-

(7
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where

5=24(A%/4p%+A),

200,08 /8 AZR]2 /A% b
K—A{3[12(3—52)} (-2

and
I'=6/12pS. (8)

For 2 >0, u,(2) is positive and monotone decreas-
ing. Alsou,(—z)=—-u,(z). Thus for |z| large we
get, combining Eqs. (4)-(7),

w(z)~(p, - pg) sgn(z) exp(- T2 2| /£). (9)

The results (4)—(9) confirm the equations pro-
posed by Widom.

Some remarks are in order. Firstly, accord-
ing to (9), the decay length of w(z) is equal to the
correlation length up to the temperature-inde-
pendent factor, VT', which is not present in Ref.
13; moreover there is experimental uncertainty'®
as to whether the decay length of the wings of the
critical profile is proportional to the correlation
length rather than equal to it. Next, our results,
which have been derived with use of the Ornstein-
Zernike approximation for the direct correlation
functions of the uniform fluid, are expected™ not
to be restricted to that approximation.

As regards the suppression of capillary waves
in this theory, it may be mentioned that whereas
the structure of the global interface of a d-dimen-
sional fluid (@ < 3) is generally believed to be
washed out at the thermodynamic limit as the ex-
ternal field vanishes, yielding isotropic and non-
clustering correlation functions, it is assumed
here in (1) that the functions e, do vanish at in-
finity, giving rise through functional expansion to
an anisotropic direct correlation function for the
intrinsic profile which also vanishes at infinity.
It is these assumptions which amount to suppres-
sion of the capillary waves in this theory.

Finally, with u, given by (7), the predicted pro-
file (4) differs both from the classical hyperbolic-
tangent profile implicit in van der Waals’s work?
and from the nonclassical profile which is ob-
tained when in van der Waals’s original deriva-
tion the mean-field equation of state is replaced
by one that reproduces more accurately the
known thermodynamic singularities at the critical
point'®; unfortunately neither the existing optical
reflectivity measurements of Webb and his co-
workers in binary mixtures of cyclohexane and
methanol® and in sulphur hexafluoride,?' together
with their reinterpretation by Meunier,?* nor the
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reflectivity and ellipsometry measurements of
Beaglehole in the binary mixture of cyclohexane
and aniline® can discriminate between the shapes
of the density profile predicted here and those
proposed in earlier works.”'® Webb (private
communication) has suggested that absolute re-
flected- and scattered-power measurements can
distinguish the capillary-wave model®® from the
present model and that of Ref. 13 but not between
the latter two cases.
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