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Evolution of Packets of Water Waves for Finite-Wave-Number Perturbations
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The evolution of packets of water waves with wave amplitudes modulated in horizontal
directions is investigated. The analysis is based on the Davey-Stewartson equations
which are valid for water of finite depth. It is shown that for finite wave numbers l of the
transverse disturbances an instability occurs: The maximum growth rates are calculated
and their physical implications are discussed.

PACS numbers: 47.35.+i, 03.40. Kf, 92,10.Hm

Various nonlinear evol. ution equations for sur-
face waves in water under the action of gravity
are of interest. For shallow water, a Korteweg-
de Vries (KdV) type equation was derived' for
nearly one-dimensional long waves. It has in-
teresting, one-dimensionally stable, soliton sol.u-
tions. The validity of this approach is limited by
the condition that the height p, of the soliton
should be much small. er than the depth h of the
water (y, /h «1). For deep water, a nonlinear
Schrodinger equation was derived' which allows
for envelope solitons. Here, in contrast to the
KdV soliton& the envelope of a wave train (with
wave number k and frequency ~) is slowl. y mod-
ulated. The envelope-soliton solutions of the
nonlinear Schrodinger equation are valid for y, /
h «ky, «1. Recently, interest has been growing
in the intermediate region where kh is finite.
Davey and Stewartson' have derived a coupled set
of equations which are val. id for irrotational. fluids
in the limit (cp,/k)' '«kh «h/p, . In the short-
wave-number region, these equations reduce to
the nonlinear Schrodinger equation whereas in
the long-wave limit [(cp,/h)'l'«kb & 1] the com-
pletely integrable Anker-Freeman equations' re-
sult. Besides these smal. l.—amplitude theories,
recentl. y' also the problem of finite-amplitude
solutions has been attacked on the basis of the
full. set of hydrodynamic equations and boundary
conditions.

All the model equations allom us to study the
two-dimensional evolution of the corresponding
sol, iton sol.utions. When the stabil. ity of one-
dimensional envelope solitons is considered' a
very interesting result occurs: For large kh

values, the plane solutions become two-dimen-
sionally unstable, whereas for kh = 1 they are
stabl. e. This leads to the question of when exactl. y
the transition from unstable to stable behavior

occurs and to the problem of estimating the
growth rates in the unstable region. This Letter
is devoted to the second problem, whereas the
first question may be answered' by kh = 1.363.
So far, except for the case of the cubic nonl. inear
Schrodinger equation, the complete dependence
of the growth rates on the perturbation charac-
teristics (wave number l) is not known. In all
theories, a small-/ expansion is performed which
does not allow one to calculate the maximum
growth rates and cutoffs. But the l. atter are need-
ed to predict lifetimes and observability. In the
following we shall derive the l dependence of the
growth rates and present the maximum growth
rates as functions of kk.

We describe the wave envelopes by the Davey-
Stewartson equations' in the form

i B,A + X 8
&

'A + p 8 „'A = v
i A i

'A + v,A Q,

x, e, 'q+ IU. , B„'q = ~, s„'|Ai'.

Here, A. corresponds to the first-order surf ace
elevation cp [gy = i~A exp(Nx —itut)+ c.c., where
g is the acceleration due to gravity] and Q is re-
lated to the velocity potential. The longitudinal
and transverse (slow) space coordinates are de-
noted by $ and q, and ~ is the (slow) time coordi-
nate. The coefficients X, p. , v, v„A.„p.„and K,
are given' in Ref. 3. It should be noted that the
coefficient v approaches 0 as kh approaches
1.363; therefore the discussion can be split into
two parts: When kh & 1.363 (v & 0), the stability
of plane sol.itons has been shown' already by in-
vestigating the Anker-F reeman equations; the
instability for kh &1.363 (v &0) will be discussed
in this paper.

For large values of Qh, the system (1) and (2)
reduces to the cubic nonlinear Schrodinger equa-
tion

2A+-gii2t, -~l2s 2A 2y7t2g-»~iAi2A =0
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The maximum elevation of the wave is defined by

y, =- ~A,/g. Perturbing A,

A = [G ($ ) +u + iv] exp(- i vA, 'r/2),

where

G($) =A, sech[A, (- v/2X)' '$]

and Fourier analyzing in the transverse direction
(wave number l) we find for the exponential
growth rate y, the complementary variational
principl. es'

—()IH,H H, Ig)
(6)

-((IH H, H I|t)

Here,

H = X8 L' —p, l~ —3vG'+ vA, ~/2+ 2z, v, l GV G,

H, = A. 8
&

' —p, l' —vG'+ vA, '/2,

V '=(X,8, ' —p, ,l') ', (10)

and M is the set of odd functions g with ((iH ~g)
&0. Several comments are in order: First, we
are using complementary variational principl. es
in order to find upper and lower bounds for the
growth-rate curves by standard numerical pro-
cedures. Secondly, the formulations (6) and (7)
are based on definiteness properties of H, and
IJ . However, H, is only positive definite for
2p. l'/v (A, '. Therefore, our calculations cannot
cover the whole l range; but, as the results will
show, the maximum growth rates occur within
this region: Beyond that limit, numerical solu-
tions of the eigenvalue problem are necessary,
as in the case of the nonlinear Schrodinger equa-
tion. Finally, for large kh values, the Davey-
Stewartson equations (1) and (2) reduce to the
cubic nonlinear Schrodinger equation (3), and ex-
pressions (6) and (7) reduce to the corresponding
variational principles for the Schrodinger equa-
tion. To test our procedure, we have evaluated
this special case first. When new coordinates

which we will. consider as a ref erence sys tern.
The stationary one-dimensional soliton solu-

tions of Eqs. (1) and (2) [or Eq. (3)] contain a free
parameters. , and can be written in the form

A. =A, sech[A, (- v/2X)'i'$] exp(- ivA, '~/2), (4)

=0.

for time (i = —w/2u), and space (x =W2$k'~'/g'~';

y =W2qk' '/g' ') are used and the variable A is
changed to A= 2k'A, Eq. (3) simplifies to

i8,A+ ,'8„'A——8, 'A+iA. i'A =0.

We write its soliton solution as

A =v 2A, sech(W2A, x). (12)
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FIG. 1. Growth rate y, vs transverse wave number I
for the cubic nonlinear Schrodinger equation (11). The
straight broken line is the asymptotic behav:ior for
small g.

For the Schrodinger equation, the operators (8)
and (9) are

H, = —
& 0„—I —2AO sech x+Ao,

II = ——,'8 ' —i' —QA 'sech'x+6 '.
We have evaluated the variational principles (6)
and (7) and find excellent agreement with the
eigenfunction solutions of Saffman and Yuen. '
The results are shown in Fig. 1; the growth-rate
curve is plotted broken for E')A, ' since then H+
changes its definiteness properties and our varia-
tional. approach is strictly val. id only for positive
definite operators IJ, . The straight broken line
(valid for l' «2, ') is the asymptotic solution of
Zakharov and Hubenchik" (y, '=';A, 'l') which we
reproduce by inserting P = sech'x tanhx. and (
=x sechx into (6) and (7), respectively.

For the Davey-Stewartson equations both varia-
tional principles (6) and (7) were evaluated nu-
merically by a von Mises procedure with a Wie-
land iteration. With use of a finite number of
test functions (,~, (i = 1, . . . ,n) the problem re-
duces to finding the l.argest eigenvalues of finite
v-dimensional matrices. The main difficulty oc-
curs when the matrix elements of the 7' ' opera-
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tor in II have to be determined. Using

(,.~, = 9
&

sech" "[A,(- v/2X}' 'g]
(15)

elements

(g& lH, Gv GH, lg,.),
(g,. l

sech)V ' sech(H, sech(V 'sech$lg, )
z=1, . . . , 20,

we have analytically traced back the most difficult

to the basic ones for i,j=1,2, &, 1~. The ele-
ments containing half-integer indices were com-
puted numerically whereas the rest can be evalu-
ated analytically,

(16)

(17)

tions by Larsen' as wel. l as Ablowitz and Segur. '
For finite l, a maximum occurs and for' even
larger l, y, diminishes. The cutoff, however,
lies outside the region of validity of our varia-
tional formulation. For fixed q, /h, the maxi-
mum growth rates increase with larger kk values.
This is al.so shown in Fig. 3. Now, for the first
time, we have results for the maximum growth
rates which determine observability of the soli-
tons. Taking, for example, y,/k=2&&10 ' and

H = 15 we obtain

(19)

which for k = 10' m yields y, = 2&10 ' sec '.
Thus the lifetime of such a soliton is approxi-
matel. y 1 h.

In Fig. 3, the asymptotic behavior of the maxi-
mum growth rate y „for large kh values can be
approximated by the formula

,„'= 0 1g'(p 0'v'/(u. ', (20)

which, for kh. -~, approaches the Schrodinger

N, l& 'I q,) = (4—/&v, "~,")g(2, l (p, "&/&, ' '+1)),
&4.1& 'l0,&=-(~/~, ) [D(-'(v "i/~ "+1))-D(p, "I/2~, '")-1],
(tc J& 'l g,) = (4X,"/I p, ,")f do exp(- q, "lo/X, '")[sinh-'(o) (1 —o/tanho)],

where r. is Riemann's zeta function and D is the
digamma function.

A typical result is shown in Fig. 2. Here we
have plotted the growth rate y, as a function of
I/Q for various parameters kh and p, /h = 0.025.
The exact values lie within the hatched area. The
latter uncertainty occurs since the number of
test functions n is finite. We cannot expect that
in the numerical. results the lower bounds (ob-
tained from the maximum principle) exactly agree
with the upper bounds (obtained from the mini-
mum principle). In addition, numerical. inac-
curacies are expected. To discriminate between
these two sources, i.e. , finite number of test
functions and numerical errors, we have also
devel. oped complementary var iational. principles
for the finite-dimensional matrix problems. For
each eigenvalue computation they show the maxi-
mum numerical errors. In our calculations nu-
merical. errors lie within drawing accuracy. For
small /, the growth rate y, increases proportion-
all.y to l. This agrees with the earlier calcula-
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FIG. 2. Normalized growth rates vs transverse wave

number for fixed cpo/k =0.025 and various parameters
kh in the case of the Davey-Stewartson equations (1)
and (2). The exact values lie within the hatched area.
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FIG. 3. Maximum growth rate y~~x vs kh for the
Davey-Stewartson equations.
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+&1/2/&~1/2 (22)

are most unstable.
In summary, we have presented the maximum

growth rates for transverse instability of enve-
lope water solitons in systems of finite depth.
Our results show for the first time that although
solitons are unstable, the decay rates can be so
small that envelope solitons are observable for
a long time. We have also depicted the wave-
number dependence of the transverse growth
rates. A clear prediction of the growth time and
wave number of the most unstable mode was pre-
sented.
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