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experiments in ~Ca.
In summary, we have shown that the inclusion

of the ~-isobar degrees of freedom introduces
a quenching of GT cross sections which depends
on the momentum transfer (angle) and the spin
of the excitation. This behavior could be used
to distinguish experimentally between the 4-
isobar quenching effect and other possible ef-
fects like, e.g. , the coupling to high-lying (40-
60 MeV) 2p-2h configurations which also gives
rise to a reduction of the low-lying GT strength. "
The latter one should be independent from the
momentum transfer and the angular momentum.

We want to thank Dr. C. Gaarde for many use-
ful discussions, and Professor Madey for com-
municating data prior to publication.

~'&Also at Physikalisches Institut, Universitat Bonn,
D-5300 Bonn, West Germany.

'D. E. Bainum etal. , Phys. Rev. Lett. 44, 751 (1980).
~C. D. Goodman et al. , Phys. Rev. Lett. 44, 1755

(1980).
3D. J. Horen et al. , Phys. Lett. 95B, 27 (1980), and

99B, 383 (1981).
4C. Gaarde e t a /. , Nucl. Phys. A369, 258 (1981).
5K. Ikeda, S. Fujii, and J. I. Fujita, Phys. Lett. 3,

271 (1963).
'

M. Rho, Nucl. Phys. A231, 493 (1974); K. Ohta and
M. Wakamatsu, Nucl. Phys. A234, 445 (1974); J. Del-
orme, M. Ericson, A. Figureau, and C. Thevenet,

Ann. Phys. (N.Y.) 102, 273 (1976); E. Oset and M. Rho,
Phys. Rev. Lett. 42, 42 (1979); I. S. Towner and F. C.
Khanna, Phys. Rev. Lett. 42, 51 (1979); W. Knupfer,
M. Dillig, and A. 11ichter, Phys. Lett. 95B, 349 {1980);
A. Hartling et al. , Phys. Lett. 104B, 261 (1981);
H. Toki and W. Weise, Phys. Lett. 97B, 12 (1980);
S. Krewald, F. Osterfeld, J. Speth, and G. E. Brown,
Phys. Rev. Lett. 46, 103 (1981); A. Bohr and B. R.
Mottelson, Phys. Lett. 100B, 10 (1981); G. E. Brown
and M. Rho, Nucl. Phys. A372, 397 (1981).

T. Suzuki, S. Krewald, and J. Speth, Phys. Lett.
107B, 9 (1981); F. Osterfeld, T. SuzuId, and J. Speth,
Phys. Lett. 99B, 75 (1981), and 100B, 519 (1981).

B. D. Anderson et al. , Phys. Rev. Lett. 45, 699
(1980); J. W. Watson etal. , Phys. Rev. C 23, 2373
(1981); R. Madey, private communication.

~G. F. Chew and F. E. Low, Phys. Rev. 101, 1570
(1956).
' F. Osterfeld, FRosT-MARs Code, unpublished.
~~W. G. Love, in The (P, n) Reaction and the Nucleon

Nucleon Force, edited by C. D. Goodman et al. (Plenum,
New York, 1980), p. 30; F. Petrovich and W. Q. Love,
Nucl. Phys. A354, 499c (1981).

~ C. Gaarde et a l., to be published.
C. Gaarde, C. Goodman, and R. Madey, private

communication.
'4A. Nadasen et a/. , Phys. Rev. C 23, 1023 (1981).
~'F. Osterfeld, to be published.
'6W. Steffen et al. , Phys. Lett. 95B, 699 (1980).
~~K. E. Rehm et al. , to be published.

A. Arima, in Proceedings of the International Con-
ference on Spin Excitations in Nuclei, Telluride, Col-
orado, 25-27 March 1982 (to be published).

Dirac Phenomenology for Deuteron Elastic Scattering
J. R. Shepard, E. Host, and D. Murdock

Nucleay Physics Laboratory, University of Co/oxado, Boulder, Colorado 80309
(Received 6 April 1982)

A relativistic description of deuteron elastic scattering based on a two-particle Dirac
Hamiltonian containing phenomenological nucleon-nucleus Dirac potentials is developed.
The resulting effective central potential is like that obtained with a folding model based
on the Schrodinger equation; the spin-orbit potential, however, is only one-half as strong.
Dirac and Schrodinger fits to 80-MeV d+ Ni data with potentials consistent with nucleon-
nucleus phenomenology are of comparable quality.

PACS numbers: 25.50.Dt, 24.10.Ht

Considerable progress has recently been made in understanding nucleon-nucleus scattering within the
framework of Dirac phenomenology. " Such an approach leads naturally to effective central and spin-
orbit potentials which are combinations of very strong Dirac vector and scalar potentials and which can
in principle be related to the meson-exchange picture of the fundamental nucleon-nucleon interaction. "'
Geometry differences between the effective central and spin-orbit potentials and their relation to the
nuclear matter distribution are also at least qualitatively explained. ' Much of the energy dependence in
the effective potentials is automatically accounted for in the Dirac formulation. "Where feasible, the
Dirae equation provides a more appropriate starting point than the Schrodinger equation for the descrip-
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tion of a nucleon in the presence of strong potentials.
In this note we report the development of a Dirac description for deuteron-nucleus elastic scattering.

We begin by writing down a two-particle Dirac equation in a Hamiltonian form similar to that used in
treating the nucleon- nucleon problem". '

,
,

'- ikcf n(1) ~ '){', +o. (2) ~
V2+[P (1) + [3(2)]]mc —(E, +E2) +VD(1) + VD(2) @ =0,

where

and m is the nucleon mass, E; is the total energy of the ith nucleon in the deuteron, VD(i) is the Dirac
potential for the ith nucleon, and + is the two-particle Dirac spinor for the deuteron which can be writ-
ten in terms of outer products of one-particle spinors. "We write

e(i) =( . .)i'({),

where u(i) and m(i) are the large and small spatial components, respective1y, of the ith nucleon and
y (i) is the usual Pauli two-component spinor. Then

y(1 2) -@(1) @(2)= " " ( )
(1)g) '(2) ' "l( ' '(1)3 (2)~(l)u(2) u (1)M)(2) ~

])2(1,2) W(1, 2)

Thus the spatial part of + is a two-by-two matrix.
We now assume that the internal spatial structure of the deuteron can be ignored and that the spatial

dependence of the potentials in Eq. (1) is upon the center-of-mass coordinate, r =~(r, +r,), only. Such
a procedure gives the general form of the deuteron-nucleus potential in the standard Schrodinger for-
mulation. We also adopt Dirac potentials of the form which describe nucleon-nucleus scattering, i.e.,

In the present work, in contrast to other approaches, ' we assume that the Dirac potentials are purely
real. We use a Schrodinger (linear) imaginary potential. In fact, in the calculations to be discussed
below, the imaginary potential is identically that used in the Schrodinger calculations.

Equation (1) then becomes, if one assumes E, E, =E,

[a(1)+a(2)] v„+[l3{1)+ ({2))] [mc+),(r)]-2[E —v„(v)]I%'(r)=0.

After insertion of the explicit form of + and performance of some algebra, uncoupled equations for U
+W and U —~ can be obtained. "After dropping all terms containing four v ~ V' operations and adding
the equations for U+@' and U —&, we obtain the following:

1 &' JR'
+ ——— (o' .o' —o ~ ro ~ r) Wg cg i 1 2 1 2 (2)

where 8 =E —V„, SRc' ~mc'+V„o, =(o, +o,)/2, and primes indicate differentiation with respect to r.
Note thai in defining o„we have specified that the two nucleons are coupled to spin 1 and that this is the
only element of the structure of the deuteron which is addressed explicitly. All terms multiplying 8" in
Eq. (2) are roughly of the same magnitude as the smallest terms multiplying U. Since W itself is the
"lower-lower" component of the scattering wave function and is smaller than U by roughly a factor of
[(E -mc')/(E+mc')]', we are well justified in setting the right-hand side of Eq. (2) to zero. We then
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have

(3)

where E„=2K and m„=2m. This equation is written with no Coulomb potential and in the no-recoil limit
appropriate for heavy target nuclei. The actual calculations, however, add a Coulomb term to the vec-
tor potential and use center-of-momentum energies and a reduced total energy for &„ to treat recoil in
a standard approximate manner. ' Note that retention of terms dropped in obtaining Eq. (3) would lead
to weak tensor interactions of various kinds.

The (approximate) Dirac equation can readily be compared with the standard Schr'odinger equation for
deuteron scattering. We note an extra r ~ ~ or Darwin term which has little effect on elastic scattering'
and an unpleasant but small term involving derivatives of h/%. In examining Eq. (3) it is useful to com-
pare it with the corresponding (exact) Dirac equation for nucleon-nucleus scattering,
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where M is the large component of the nucleon
spinor and SKpc Ep+mpc +V, —V„. It is seen
that, except for the "unpleasant" term mentioned
above, the central potential for the deuteron is
twice that for the proton, in keeping with standard
folding-model concepts.

Beyond this, we begin to see significant differ-
ences between the Schrodinger and Dirac results.
The proton and deuteron spin-orbit potentials,
which in the Dirac formulation are purely relativ-
istic effects resulting from an &-dependent coup-
ling between large and small components, do not
have the same relationship as in the nonrelativis-
tic picture. Nonrelativistically, the deuteron
spin-orbit potential is approximately the sum of
the proton and neutron spin-orbit potentials, i.e. ,

V„(L~,o„,x) = ——V„(r)(L~ ~ o~ + L„~ o „)/de

1 d= ——V ~(x)L ~ o .r dx

Relativistically' we have

-h c 1 Igp'
V„~(Lp,op, x) = — Lp op2Z

(6a)

(6b)

Since V,= —V„we have SR~'/5R~= &'/&. Conse-
quently we find

V„~/V„'= 2L~ ~ o~/L„~ o,

versus the ratio of unity obtained above by non-
relativistic folding arguments. This is perhaps a
surprising result, especially since most phenome-

nological deuteron Schrodinger potentials have
spin-orbit potentials approximately equal to the
proton potentials. ' However, it is also well known
that spin observables in deuteron elastic-scatter-
ing calculations at energies below - 100 MeV re-
sult from a complicated interplay of the spin-
orbit and central potentials. Therefore it is to
some extent an open question as to how well deter-
mined the ratio of proton to deuteron spin-orbit
strengths is phenomenologically. Higher-energy
measurements, where spin observables are likely
to depend more straightforwardly on the spin-de-
pendent potentials, would be of obvious value in
this regard. It is also possible that the ratio of
2 discussed above is somewhat misleading be-
cause the functional forms of the spin-orbit po-
tentials are appreciably different in the two for-
mulations. In any case, we have attempted to fit
the highest-energy complete set of deuteron elas-
tic scattering data available, 79-MeV d +"Ni data
of Stephensonetal. ,' using Eq. (4). For conveni-
ence, we have used the phenomenologieal imagin-
ary Schrodinger parameters determined in Ref. 7.
Thus, as discussed above, only the real poten-
tials have been treated as Dirac potentials. The
resulting fit —which was obtained after limited
searching —is compared with the Schrodinger
best fit in Fig. 1. The quality of the fits is com-
parable. The phenomenological vector and scalar
strengths for the Dirae potential are roughly dou-
ble those obtained by us for nucleon-nucleus scat-
tering in the energy range of 40 MeV. Thus the
phenomenological Dirac potential is consistent
with our folding arguments, the apparent factor
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the vector potential through the factor @'/@
=- V, '/(E —V,) while the Darwin term depends
only on the scalar potential through Ãi'/K = V,'/
(mc'+V, ). This is to be contrasted with the nucle-
on spin-orbit and Darwin potentials which are
both determined by IR~'/K~ = (- V„'+V,')/(E +mc'
—V„+V,) which contains both vector and scalar
potentials. These various dependences may facil-
itate experimental determination of the vector
and scalar potentials by themselves rather than
in combination with one another. The form of the
deuteron spin-orbit potential also has interesting
implications for the scattering of antideuterons.
As is well known, when antiparticles interact with
nuclear vector and scalar potentials the signs of
the vector potentials are reversed. Thus anti-
protons should see a very deep central potential
(-1 GeV) and a negligible spin-orbit potential.
On the basis of these notions and Eg. (3), anti-
deuterons should see a correspondingly deep cen-
tral potential, while the spin-orbit potential,
rather than becoming small, merely changes sign
relative to the deuteron case. The deuteron po-
tentials developed here are also crucial in Dirac
calculations for the (p, d) reaction. '

We would like to acknowledge useful discussions
with E. Siciliano, A. Barut, and E. Stephenson.
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FIQ. 1. Dirac and Schrodinger fits to the cross sec-
tion and vector analyzing power data of Stephenson
et a. {Ref. 7).

af 2 reduction in spin-orbit strength notwithstand-
ing.

Another interesting feature is that the deuteron
spin-orbit potential is determined exclusively by
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