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A classical analysis is presented of the microwave perturbation of electrons bound to
the surface of liquid helium by their image charge. Since the classical dynamics can
exhibit chaotic behavior, this one-dimensional quantum system provides a novel system
for the experimental investigation of quantum stochasticity. Analytic estimates for the
classical thresholds and rates for stochastic excitation and ionization are determined as
functions of microwave field amplitude and frequency. The frequencies and powers re-
quired to study stochasticity in the quantum regime are readily available.
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Recently, deterministic classical systems with
chaotic dynamics have been the subject of exten-
sive research; however, little progress has been
made on the profound question of whether the
chaotic dynamics persist in a quantum mechan-
ical description of these systems. This problem
is important for a wide range of applications
such as the calculation of the vibrational and ro-
tational spectra of polyatomic molecules and the
determination of the response of atoms and mole-
cules to time-dependent electromagnetic fields.!
Both the n-body problems and the driven oscil-
lators correspond to nonintegrable, classical sys-
tems which exhibit chaotic behavior.

Numerical studies® of systems which exhibit
chaotic behavior in the classical limit suggest
that the quantum dynamics are also stochastic
(mixing). However, for time-dependent Hamil-
tonians with discrete quasi-energy spectra® the
quantum dynamics are always quasiperiodic and
never chaotic. The question of whether a quan-
tum system can be stochastic must, ultimately,
be answered by experimental investigations of
real physical systems. The purpose of this Let
ter is to suggest a realistic experiment to study
the quantum dynamics of a time-dependent sys-
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tem which exhibits classical stochasticity.

The experiments of Bayfield and Koch* on micro-
wave ionization and excitation of highly excited
hydrogen atoms (principal quantum number # ~ 50)
provide the strongest evidence for stochastic be-
havior in a quantum system. Because of the
large n values, the electron can be treated semi-
classically. For sufficiently high microwave
power, ionization results when a chaotic, clas-
sical trajectory diffuses over the ionization
threshold. Monte Carlo studies® of the classical
trajectories of an electron in combined Coulomb
and microwave fields give ionization rates which
are in excellent agreement with experiment.

Unfortunately, Bayfield and Koch were unable
to probe the quantum regime (low n) because of
the high orbital frequencies and binding energies
of the electron in the hydrogen atom. Moreover,
further analytic study of the classical, semiclas-
sical, and quantum behavior of this system has
been complicated by the three-dimensional char-
acter of the electron dynamics.

A simpler and more accessible quantum sys-
tem for experimental study is provided by sur-
face-state electrons (SSE) which are weakly
bound to the surface of liquid helium by their
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image charge. Spectroscopic studies by Grimes
et al.® found that the energy levels of the SSE are
given by the hydrogenic formula E,=-Z%®/n?, n
=1,2,3, ..., where ®=13.6 eV. These energy
levels result from a one-dimensional quantum
mechanical treatment of the SSE which assumes
an attracting 1/x potential due to the image charge
and a repulsive barrier at the surface due to
Pauli exclusion. Since liquid helium is a poor
dielectric the effective charge is very small, Z
~7x1073, Consequently, the binding energies
and the characteristic frequencies are four ord-
ers of magnitude smaller than those for a hydro-
gen atom.

The experiment that I propose is a study of the
dynamics of a SSE in a microwave field. The re-
mainder of this paper consists of analytic esti-
mates of the classical threshold for stochastic
ionization and excitation of the SSE as functions
of microwave amplitude and frequency. These
results, which are based on the resonance over-
lap criterion for onset of global stochasticity,
should be valid for large quantum numbers #. |

I=3Va,

92{ 2{sin” [ (x /a)*"2] - [(x/a)(1 - x/a)}"%, p >0,
27 — 2{sin" [ (c/a)"/?] = [(v fa)(1 = x /) ]%, p <O,

where a is the maximum excursion of the elec-
tron in units of ¢,. The new Hamiltonian is H(I)
=—1/1281* which gives a constant angular veloc-
ity Q,()=dH ,/dI=1/641°.

Since the microwave wavelengths are long com-
pared with the maximum excursion, a, of the SSE
from the liquid-helium surface, we can neglect
the spatial variation of the perturbing electric
fields. Therefore, in dimensionless variables
the perturbed potential due to a microwave field
with amplitude E and frequency w is V(x,?)
=ex cos(Q?), where Q=w/w, and € =q,%E /8Ze¢.

For sufficiently small electric fields the Kol-
mogorov-Arnold-Moser (KAM) theorem’ guaran-
tees that most of the straight-line trajectories in
action-angle space will be only slightly distorted
by the perturbation. If we expand the perturba-
tion in a double Fourier series®in 6 and ¢, the
perturbed Hamiltonian can be written as

H(I,0,t)=H,(I)+ 2, V, expl-i(md+nQt)]. (4)

The maximum distortion of the orbits will occur
at the resonant frequencies and actions which are
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Moreover, if the chaotic dynamics persist for
low n, this calculation suggests that the micro-
wave frequencies and powers required to probe
the quantum regime are readily available. More
detailed semiclassical and quantum (time-de-
pendent perturbation theory) treatments of this
system will be considered in future work for
comparison with the experimental results which
will, hopefully, be forthcoming.

First, we consider the integrable dynamics of
a classical electron in a one-dimensional 1/x
potential with a repulsive barrier at the origin.
The equations of motion for this system are gen-
erated by the Hamiltonian

J— 2
H,(c,p)=p?/2m, +{°°Z€x/\f(’) x>0,
2 .

(1)
A bound electron with fixed energy —E, bounces
back and forth in the potential well between x =0
and x =a,=Ze?/E, with angular frequency w,
= (BZez/mea*")l/z.

A canonical transformation’ to action-angle var-
iables reduces the unperturbed dynamics to
straight-line trajectories in action-angle space,

(2)
(3)

ldetermined by the relation®
mQ(I)+n2 =0. (5)

For small perturbations the Hamiltonian can be
approximated in the vicinity of each resonance by
the Hamiltonian of a pendulum, and the electron
trajectories near the resonances are confined in
narrow island chains in action-angle space. The
electrons gain and lose energy as they ride the
perturbation but no net change in the energy oc-
curs. The island chains corresponding to the
three lowest resonances are shown in Fig. 1.

As the perturbation increases the islands grow
wider in action. When the islands are sufficiently
large the electron can diffuse in action (or ener-
gy) by wandering from one island chain to another.
Roughly speaking, this occurs when the islands
generated at the resonances overlap, and the or-
bit of the electron is so distorted by one reso-
nance that its oscillation frequency becomes reso-
nant with another resonance. This “resonance
overlap criterion” has been the subject of ex-
tensive numerical investigations® which indicate
that it provides a good estimate for the onset of
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The widths of the islands are determined by the L o
corresponding Fourier amplitudes, V,,, of the asbl T "-' ey

perturbation. Following Ref. 8 we estimate the
island widths by approximating the Hamiltonian in
the vicinity of the resonance by the Hamiltonian
for a pendulum. The island width corresponds to
the width of the trapping (libration) region®:

8V (I

Wmn:2<—m—l>1/2

s/l ; ©)

Imn

where 1,,, = 0.25(m /nQ)’? is the resonant action
defined by Eq. (5).

The Fourier components, V., of the oscillat-
ing microwave potential are given by

V,(0)=(/4m) [ a6 eimox(6,1), (1)

where n=+1. To evaluate the integral in Eq. (7)
we use Eq. (3) to change the variable of integra-
tion from 6 to x. This gives

V,a)= (ea/ﬂ)foldz 23/2(1 - z) 12 cos(2misin™(z'/?) - [z (1 -2) /%)~ (0.26/ﬂ)€am'3/2,

25 e g
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FIG. 1. Island chains for the m =1, 2,3 resonances
for a perturbation with @ =1 and €= 0.00375. The m =3
islands already exhibit large stochastic regions. Also
shown is a confining KAM surface between the m =1
and m = 2 resonances.

(8)

where z=x/a. Then the width of the mth resonance is

W, ~0.47¢2m'/4 /g,

(9)

The zero-order islands overlap when the ratio of the island width to separation is greater than 1,

1<0.5(W,,, ,+W,)/6,~5.6€"2m11/12/Q2/3 " 1

where the separation of the resonances is

m=ln o1 =1, =0.25[(m +1)/3 = m'3]/Q3~1/120"*m>3 | m > 1.

Equation (10) determines the critical microwave
field required for excitation from one classical
resonance to another,

€, >0.0320%/3, " 22/12, (12)

Since the island overlap, Eq. (10), increases with
m, once the microwave field exceeds the thresh-
old for stochastic diffusion for electrons with ac-
tion I,, then these electrons can diffuse to larger
actions (or energies) until they ionize.

When the islands overlap, the classical excita-
tion rate can be estimated with random-walk argu-
ments. A quasilinear® treatment of the distribu-
tion of trajectories in action-angle space leads to
a Fokker-Planck—type diffusion equation. An
estimate!® of the characteristic diffusion rate for
an electron to random walk from the m to the m

+1 resonance is given by
v, ~44e2m®3/Q5/3 m > 1., (13)

Since Eq. (13) is a rapidly increasing function of
m it provides a convenient order-of-magnitude

(10)

(11)

lestimate for the stochastic ionization rate.

These analytic estimates for the stochasticity
threshold, Eq. (12), and the excitation rate, Eq.
(13), have been verified by numerical integrations
of the perturbed equations of motion. For small
electric fields the electrons remain confined near
their initial action (see Fig. 1); however, as the
field is increased above the threshold, the trajec-
tories span several resonances indicating the
breakup of confining KAM surfaces.” The numeri-
cal results for both the stochastic threshold and
excitation rate agree well with the analytic pre-
dictions as shown in Fig. 2.

If we normalize the present predictions with
respect to the quantum mechanical ground-state
energy of the SSE in the experiment of Grimes
etal., —E,=-Z*0=6.TX10"" eV, we can assess
the feasibility of the proposed experiment. The
maximum excursion and oscillation frequency of
the corresponding classical electron are a¢,=1.51
%X107% ecm and v,=w,/27 =320 GHz, and the bind-
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FIG. 2. Theoretical, Eq. (13), and numerical excita-
tion rates from the m to m + 1 resonances plotted as a
function of the dimensionless electric field strength,
¢, for the first five resonances with Q@ = 1. The five
different symbols for the numerical data points corre-
spond to the different values of m. The error bars re-
present an estimate of statistical errors in the Monte
Carlo calculations. No excitations were observed, nu-
merically, for € < ¢, as predicted by Eq. (10).

ing electric field at maximum excursion is E ,
=Ze/a,2=450 V/cm. Therefore, in real units the
predictions for the threshold microwave fields
and frequencies and the subsequent diffusion rates
are

E =€X%3600 V/cm, (14)
w/21=Q %320 GHz, (15)
v, =1, %320 GHz. (16)

For microwave frequencies ~320 GHz, 2~ 1, a
field of E ~115 V/cm is required to classically
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excite a SSE at a rate v,~ 14 GHz. Moreover,
since the nth quantum level is approximated by
the mth classical resonance with m =n3Q, the
power threshold for stochastic ionization de-
creases significantly for SSE’s in excited states.
If the classical stochasticity persists for this
driven, quantum oscillator, experimentalists
should observe both enhanced linewidths and
measurable ionization rates which increase with
microwave power.
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