Continuity of the Chemical Potential across an Oscillating Superleak Transducer

In a recent Letter,¹ Liu and Stern have modeled the operation of a second-sound transducer (an oscillating porous membrane) by assuming that the normal fluid velocity, v_n , is equal to the membrane velocity, v_M , at the position of the membrane and that the chemical potential is continuous across the (very thin) porous membrane. They further assumed that the oscillatory part of the chemical potential, $\delta\mu$, is zero at the membrane position and showed that the relative amplitude of first sound ($A_1 \equiv \delta \rho / \rho$) is very small compared with that of second sound $(A_2 \equiv \delta \sigma / \sigma)$; they found, in fact, that $A_1/A_2 = \rho_n c_2^2/\rho_s c_1^2$, which is generally orders of magnitude smaller than a previous result² based on the boundary condition v_{s} =0 at the membrane. The purpose of the present Comment is to investigate the implications of relaxing the requirement that $\delta \mu = 0$ at the membrane but retaining the requirement that μ be continuous across it. The relevant result is A_1/A_2 $=\rho_n c_2^3 / \rho_s c_1^3$ which is generally another order of magnitude smaller still than the Liu and Stern result. In this Comment, I will use Liu and Stern's notation.

The geometry is an oscillating membrane of negligible thickness, l, occupying the plane x = 0 whose pores are small enough to clamp the normal fluid. There is a rigid backing plate at x = -L. The membrane oscillates with a velocity $v_M e^{-i\omega t}$, thus generating first- and second-sound waves of amplitudes A_1 and A_2 propagating to the right and to the left. These latter are reflected back towards the right at x = -L. The boundary conditions determine all six unknown amplitudes. At any position $\delta \mu$, v_n , and v_s are linearly related¹ to $\delta \rho$ and $\delta \sigma$.

If one assumes that this process is adiabatic, the boundary conditions at x = -L are $\rho_s v_s$ $+\rho_n v_n |_{x=-L}=0$, and $\rho \sigma v_n |_{x=-L}=0$ (i.e., $v_s = v_n = 0$). The density and entropy variations in the region $-L \le x \le 0$ are, therefore, of the form $\delta \rho / \rho$ $= A_1' [\exp(-iq_1 x) + \exp(2iq_1 L)\exp(iq_1 x)]$ and $\delta \sigma / \sigma$ $= A_2' [\exp(-iq_2 x) + \exp(2iq_2 L)\exp(iq_2 x)]$. The four unknown amplitudes A_1, A_1', A_2 , and A_2' are determined from the four boundary conditions at $x = 0: v_n(0^-) = v_n(0^+) = v_M, \ \delta \mu (0^-) = \delta \mu (0^+), \ \rho_s v_s(0^-)$ $+ \rho_n v_n(0^-) = \rho_s v_s(0^+) + \rho_n v_n(0^+)$. The resulting solutions are particularly simple in two limiting cases: (A) In the limiting case $L \to \infty$, the waves reflected from the back wall never return (under the assumption that q_1, q_2 have small imaginary parts) and the solutions (for x > 0) are identical in all respects to those derived by Liu and Stern.

(B) The opposite limit, appropriate to most experiments $(L \ll q_2^{-1}, q_1^{-1})$, is radically different. The determinant of the 4×4 matrix goes to zero as L^1 ; thus the unknown amplitudes can be expanded in a power series in L beginning with L^{-1} , i.e., $A_1' = \alpha_1' L^{-1} + \beta_1' + O(L^1)$, etc. By collecting like powers of L, one can solve for the α 's and β 's explicitly. The resulting amplitudes for first and second sound are

$$A_{1} = v_{M}(c_{2}^{2}/c_{1})[c_{2}^{2} + (\rho_{s}/\rho_{n})c_{1}^{2}]^{-1},$$

$$A_{2} = v_{M}(c_{1}^{2}/c_{2})[c_{1}^{2} + (\rho_{n}/\rho_{s})c_{2}^{2}]^{-1},$$

$$A_{1}/A_{2} = (\rho_{n}/\rho_{s})(c_{2}/c_{1})^{3}.$$

Thus, the ratio of first- to second-sound amplitudes is down by another factor of c_2/c_1 compared to the Liu-Stern result, in this limit. As a corollary, the quantities δP , δT , $\delta \rho$, and $\delta \sigma$ are all nonzero and independent of position in the region $-L \le x \le 0$. To order L^{-1} these values are, coincidentally, the same as those calculated by Liu and Stern (what they call ΔP , ΔT , etc.). Therefore, to order L^{-1} , $\delta \mu = 0$ in this region; to order L^0 , $\delta \mu (0^-)$ has the same (nonzero) value as $\delta \mu (0^+)$.

The Liu-Stern analysis of the nuisance effects is unaffected. Specifically, the normal-fluid slip due to Poiseuille flow through the pores is

$$Q = N \rho_n \pi R^4 \{ (\rho_n / \rho) [\delta P(0^-) - \delta P(0^+)] + \rho_s \sigma [\delta T(0^-) - \delta T(0^+)] \} / 8\eta_n I$$

For small *L*, the quantity in curly brackets is equal to $\delta P(0^-)$, *Q* is the same as that given by Liu and Stern, and the condition for suppression of Poiseuille flow [their Eq. (8)] is unchanged.

I am grateful for conversations with R. Kleinberg, J. Langer, and especially D. Wilkinson.

David Linton Johnson

Schlumberger-Doll Research Center Ridgefield, Connecticut 06877

Received 4 August 1982 PACS numbers: 67.40.Pm, 67.50.Fi

 $^1\mathrm{M}.$ Liu and M. R. Stern, Phys. Rev. Lett. <u>48</u>, 1842 (1982).

 $^2\mathrm{R.}$ A. Sherlock and D. O. Edwards, Rev. Sci. Instrum. <u>41</u>, 1603 (1970).