Continuity of the Chemical Potential across an Oscillating Superleak Transducer

In a recent Letter,¹ Liu and Stern have modeled the operation of a second-sound transducer (an oscillating porous membrane) by assuming that the normal fluid velocity, v_n , is equal to the membrane velocity, v_{μ} , at the position of the membrane and that the chemical potential is continuous across the (very thin) porous membrane. They further assumed that the oscillatory part of the chemical potential, $\delta \mu$, is zero at the membrane position and showed that the relative amplitude of first sound $(A_1 \equiv \delta \rho / \rho)$ is very small compared with that of second sound $(A_2 \equiv \delta \sigma / \sigma)$; they found, in fact, that $A_1/A_2 = \rho_n c_2^2/\rho_s^2 c_1^2$, which is generally orders of magnitude smaller than a previous result² based on the boundary condition v_s $=0$ at the membrane. The purpose of the present Comment is to investigate the implications of relaxing the requirement that $\delta \mu = 0$ at the membrane but retaining the requirement that μ be continuous across it. The relevant result is A_1/A_2 $=\rho_n c_2^3/\rho_s c_1^3$ which is generally another order of magnitude smaller still than the Liu and Stern result. In this Comment, I will use Liu and Stern's notation.

The geometry is an oscillating membrane of negligible thickness, l , occupying the plane $x = 0$ whose pores are small enough to clamp the normal fluid. There is a rigid backing plate at x $=-L$. The membrane oscillates with a velocity $\frac{\omega_t}{\omega}$, thus generating first- and second-sound waves of amplitudes A_1 and A_2 propagating to the right and to the left. These latter are reflected back towards the right at $x = -L$. The boundary conditions determine all six unknown amplitudes. At any position $\delta \mu$, v_n , and v_s are linearly related¹ to $\delta \rho$ and $\delta \sigma$.

If one assumes that this process is adiabatic, the boundary conditions at $x = -L$ are $\rho_s v_s$ $+ \rho_n v_n |_{x=-L} = 0$, and $\rho \sigma v_n |_{x=-L} = 0$ (i.e., $v_s = v_n = 0$). The density and entropy variations in the region $-L \leq x \leq 0$ are, therefore, of the form $\delta \rho / \rho$ $=A_1'[\exp(-iq_1x) + \exp(2iq_1L)\exp(iq_1x)]$ and $\delta\sigma/\sigma$ $=A_2'[\exp(-iq_2x)+\exp(2iq_2L)\exp(iq_2x)]$. The four unknown amplitudes A_1 , A_1' , A_2 , and A_2' are determined from the four boundary conditions at 'termined from the four boundary conditions at $x = 0$: $v_n(0^-) = v_n(0^+) = v_M$, $\delta \mu(0^-) = \delta \mu(0^+)$, $\rho_s v_s(0^-)$ + $\rho_n v_n(0^-) = \rho_s v_s(0^+) + \rho_n v_n(0^+)$. The resulting solutions are particularly simple in two limiting cases:

(A) In the limiting case $L - \infty$, the waves reflected from the back wall never return (under the assumption that q_1, q_2 have small imaginary parts) and the solutions (for $x>0$) are identical in all respects to those derived by Liu and Stern.

(B) The opposite limit, appropriate to most experiments $(L \ll q_2^{-1}, q_1^{-1})$, is radically different. The determinant of the 4×4 matrix goes to zero as L^1 ; thus the unknown amplitudes can be expanded in a power series in L beginning with L^{-1} , i.e., $A_1' = \alpha_1' L^{-1} + \beta_1' + O(L^1)$, etc. By collecting like powers of L , one can solve for the α 's and β 's explicitly. The resulting amplitudes for first and second sound are

$$
A_1 = v_M (c_2^2/c_1) [c_2^2 + \varphi_s / \rho_n) c_1^2]^{-1},
$$

\n
$$
A_2 = v_M (c_1^2/c_2) [c_1^2 + \varphi_n / \rho_s) c_2^2]^{-1},
$$

\n
$$
A_1 / A_2 = \varphi_n / \rho_s (c_2 / c_1)^3.
$$

Thus, the ratio of first- to second-sound amplitudes is down by another factor of c_2/c_1 compared to the Liu-Stern result, in this limit. As a corollary, the quantities δP , δT , $\delta \rho$, and $\delta \sigma$ are all nonzero and independent of position in the region $-L < x < 0$. To order $L⁻¹$ these values are, coincidentally, the same as those calculated by Liu and Stern (what they call ΔP , ΔT , etc.). Therefore, to order L^{-1} , $\delta \mu = 0$ in this region; to order L^0 , $\delta \mu$ (0⁻) has the same (nonzero) value as $\delta\mu$ (0⁺).

The Liu-Stern analysis of the nuisance effects is unaffected. Specifically, the normal-fluid slip due to Poiseuille flow through the pores is

$$
Q = N \rho_n \pi R^4 \{ \rho_n / \rho \} [\delta P(0^+) - \delta P(0^+)]
$$

+ $\rho_s \sigma [\delta T(0^+) - \delta T(0^+)] \} / 8 \eta_n l$

For small L , the quantity in curly brackets is equal to $\delta P(0^{\circ})$, Q is the same as that given by Liu and Stern, and the condition for suppression of Poiseuille flow [their Eq. (8)] is unchanged.

I am grateful for conversations with R. Kleinberg, J. Langer, and especially D. Wilkinson.

David Linton Johnson

Schlumberger-Doll Research Center Ridgefield, Connecticut 06877

Received 4 August 1982 PACS numbers: 67.40.Pm, 67.50.Fi

¹M. Liu and M. R. Stern, Phys. Rev. Lett. 48 , 1842 (1982).

 ${}^{2}R$. A. Sherlock and D. O. Edwards, Rev. Sci. Instrum. 41, 1603 (1970).