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Squeezed States and Sub-Poissonian Photon Statistics
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It is pointed out that, although squeezing and sub-Poissonian photon statistics need not
go together, in the sense that an electromagnetic field may exhibit one but not the other,
the method that is normally used to detect a squeezed state automatically generates sub-
Poissonian photon statistics. However, when these considerations are applied to the
fluorescence from a coherently driven. atom, which exhibits both squeezing and sub-Pois-
son fluctuations, one finds that the statistics of the emitted photons show even larger de-
partures from classical field theory than the squeezing.

PACS numbers: 42.50.+q, 32.80.-t, 05.30.-d

The nonclassical character of the so-called
squeezed quantum states has recently been dis-
cussed in connection with the phenomenon of reso-
nance fluorescence from an atom. ' It was point-
ed out by Walls and Zoller' that, like states of
the electromagnetic field that exhibit sub-Pois-
sonian photon counting statistics, squeezed states
have no classical analog, because their diagonal
coherent-state representation cannot be nonnega-
tive." On the other hand, as the authors correct-
ly point out, there is in general no direct connec-
tion between squeezing and sub-Poissonian sta-
tistics; states exist that exhibit the first but not
the second, and vice versa. The phenomenon of
atomic resonance fluorescence is distinguished
in that the electromagnetic field exhibits both
squeezing' and sub-Poissonian photon statistics' '
at the same time. In practice the squeezed state
is normally identified by phase-sensitive inter-
ference with another optical field in a coherent
state, followed by photoelectric detection of the
resulting intensity fluctuations. I would like to
draw attention to the fact that under these circum-
stances the squeezing always gives rise to sub-
Poissonian photon statistics. On the other hand,
when these conclusions are applied to the phenom-
enon of atomic resonance fluorescence, one finds
that the departures from Poissonian photon sta-
tistics generated by such phase-sensitive inter-
ference are always smaller than those produced
directly in the process of atomic emission. The
general problem of detecting squeezed states in
various ways has been treated theoretically in
some detail. ' "

In the following we adopt a notation that is simi-
lar to that used in Ref. 1. Let E be a real elec-
tromagnetic field amplitude, with positive- and
negative-frequency parts E ',E . Then we
write"

E(+)+E( ) E — ~(E(+) E("))

(4)

As the squeezed state has been defined' by the re-
quirement that either ((~,)') or ((~,)) be be-
low the minimum-uncertainty product C, it fol-
lows immediately from Eq. (3) that either

(:(~E,)':& & O or (:(m,)'.) & 0 (5)

in a squeezed state. As was pointed out in Ref. 1,
this cannot be achieved in any quantum state for
which there exists a classical analog.

On the other hand, with the help of the commu-
tation relations, the variance of the photon num-
ber operator n in any quantum state of the elec-
tromagnetic field can always be expressed in the
form

from which it follows that fluctuations less than
Poissonian require (:(hn)':) & 0, and this again
has no classical counterpart.

In order to detect the in-phase or the out-of-
phase components K, and E, of the field in the
squeezed state described by some density oper-
ator p, one would generally set up an interfer-
ence experiment, in which the light from a laser

for the two components of the field that are 90'
out of phase, Although E could be the amplitude
of the electric vector, it will be a little more con-
venient to define E in such a way that (E' 'E"')
represents the average flux of photons of the elec-
tromagnetic field. If we write

[E(+) E (- )] —g (2)
for the commutator, which is a positive c num-
ber, then the corresponding commutator of E,
and E, is given by

[E„E,] =2zC, (3)

and the dispersions of k, and E, are

((~E,)) = C +(:(~E,)'.),
((~E,)) = C+(:(~E,)':).
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centered on the same midfrequency is superim-
posed-. We idealize this by taking the interfering
light to be in a pure coherent state l(v)&, with

I b)& =D(b)) I (0)&,

where (v) is a multimode set of complex ampli-
tudes, and D({v)) is the displacement operator. '

!
Since

I (v)& is the right eigenstate of E'~ we shall

write

E"lb)&=gl( )&,

where g is some complex amplitude. Then the
density operator of the resulting field has the
form

D(b)) pD'(( )),
and the expectation value of any dynamical vari-
able 0 is given by

»«D( Lv)) PD'(b))] =» [D'Hv))OD(b)) j]=(D'(Cv))OD((v))&,

where the symbol (~ ~ ~
& always denotes the quantum expectation in the original state p. The field re

suiting from the interference can be shown to have the same dispersions in E, and E, as the original
field, for we observe that

(D'(b))E, 'D(N))& -&D'(( ))E,D(b))&'
—((E(+)+g +E(-)+go)2& ((E(+) +g +E( )+g +)&2=(E 2& (E &2 (9)

and similarly for E,. In deriving this equation use has been made of the displacement property of the
D(/v )) operator, '

D'(( ))E"D(b))=E"+g.
I et us now examine the photon statistics of the superposed field, which are different from the ori-

ginal. The average number of photons counted by a detector in some sufficiently short time interval
T can be expressed in the form

&~& = T(D'(b))E' 'E"D(6 ))& =nT(Ã' '+g*)(E"+g)&
where n is a constant characterizing the collection efficiency and the quantum efficiency of the detec-
tor. Similarly one can express the difference between the variance and the mean as

((b )'&-( & =(»)'[&D'(4))E' 'E' 'E "E"D(4))&—(D'(4))E' 'E"D(4))&']
= (nT)2[((E(- ) +g 0)2(E(+) +g )Q ((E( ) yg w)(E(+)+g ))2]

With the help of Eqs. (1) and (2) we may readily show that

((bn)& - (n& = (QT)'I g I'[(:(bE,)':& cos'8+(:(bE,)'.&
Sin'8+ ,'(bE,bE, + bE,bE—,) sin28]

+(nT)'[(E'-~'E'"& —(E' &E&'»'+2g(bE' &b(E' ~E'~)&+c.c.], (12)

after introducing the polar angle 8 by writing g = Ig I exp(i8).
If the coherent light beam is made sufficiently intense, the terms in Ig I in Eq. (12) can be made to

dominate over those in g and those without g, which will henceforth be discarded. By changing the
phase angle 9 we can therefore examine the fluctuations of E, and E, in turn. Thus, we obtain

I
(nT)'I g I'(:(b,E,):&, if 8 = 0,

((«)'& -(~& = '
I (ofT)'Ig I'(:(bE,)':&, if 8 =1T/2,

and it follows from Eq. (5) that if either the in-
phase or the out-of-phase component is squeezed,
then the associated photon counting statistics are
sub-Poissonian. Although this conclusion is al-
ready contained in Refs. 9 and 10, it is not easily
extracted therefrom. Sometimes it is convenient
to introduce the parameter Q defined by

e -=[&(b.)'& —&.&]/&.& (14)
as a measure of the departure from Poisson sta-

tistics. ' It is clear from Eq. (11) that in a strong
coherent field (n& = a Tl g I', so that we obtain

q=nT(:(bE,.)':&, i=1,2.

q is therefore always negative for one of the var-
iables E„E,in the squeezed state when the phase
angle 8 is properly chosen.

A general remark concerning squeezed states
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or vice versa, and from Eq. (15) this gives a
maximum negative Q value of

(17)

(18)

Walls and Zoller have pointed out that —q can be-
come twice as large in the transient regime of
atomic fluorescence. '

This result may now be compared with the
maximum departure from Poisson statistics

in classical optics may be appropriate here.
Classically, there are no restrictions on the
fluctuations of the in-phase and out-of-phase
components E„E,of the electromagnetic field
amplitude, and either or both of the dispersions
of E»F., can, in principle, be below C, although
the two dispersions are equal if E ' and I.
are analytic signals. Such classical fields have
occasionally been introduced in the discussion of
the problem of gravitational wave detection. " Al-
though the optical field could be described as be-
ing in a classical squeezed state, the photoelec-
tric counting fluctuations produced by such a
classical field will always be greater than Pois-
sonian, both before and after interference with a
coherent field. In this sense the classical squeezed
state is always clearly distinguishable from its
quantum mechanical counterpart.

Let us now apply these considerations to the
problem of resonance fluorescence from a two-
level atom. It may readily be shown that in the
steady state, and for a certain phase of the
field, "

(16)

in our units, where o, (i = 1, 2, 3) is half the ith
Pauli spin operator, and the parameter 2p is the
Einstein A coefficient for the excited atomic
state. From expressions for (o,) one finds that
maximum squeezing in the steady state is ob-
tained when either'

achievable by counting the photons emitted by
the driven atom directly. As Eq. (18) applies to
a short-time counting situation, the comparison
is meaningful only if we impose a. similar re-
striction on the direct photon-counting experi-
ment. From Eq. (lib) of Ref. 6 one easily finds
by expanding in powers of pT that, for pT «1,
Q has the largest negative value of

We therefore conclude that the problem of detect-
ing the squeezing of the electromagnetic field
radiated by a single coherently driven atom is at
least an order of magnitude more difficult than
the (already nontrivial) problem of observing the
non-Poissonian photon statistics directly. In the
sense of maximizing —Q, the photon emission
from an atom is even more "nonclassical" tha, n
the squeezing.
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