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Isotopically resolved nuclear fragments (Af, &~}, 3~Zf ~14, produced by protons in
the energy range 80 ~E;„,. ~350 GeV incident on krypton and xenon targets have been stud-
ied at the Internal Target Laboratory of the Fermi National Accelerator. A power-law
dependence, isobaric yield ~A~ ', was found to describe the data over a broad range of
yields. The particular value of & is a signature for the fragment formation mechanism.

PACS numbers: 25.40.Rb, 13.85.-t, 21.60.Ev

It is well known" that nuclear fragment produc-
tion is associated with collisions yielding high-
multiplicity final states. The existence of a limit-
ing fragmentation region for energies greater
than approximately 10 GeV incident energy estab-

lishes fragment production as a distinct high-en-
ergy phenomenon. ' A central question concerns
the nuclear state which emits the multiply charged
heavy fragments. Previous workers using elec-
tronic techniques have focused attention on-the

1982 The American Physical Society 1321



VoLUME 49, NUMBER 18 PHYSIGAL REVIEW LETTERS 1 NovEMBER 1982

characteristics of the fragment kinetic energy
spectra and yields without the benefit of isotop-
ic identification for the heaviest fragments ob-
served. 4 ' In this paper we report the results of
a high-statistics, high-resolution study of the iso-
topically resolved fragment kinetic-energy spec-
tra and yields for fragments with charge 3 -Zf
-14, mass 6-A&-31, and kinetic energy 5 MeV
-Ef -100 MeV. We find that the fragment mass
yields produced in proton-krypton and proton-
xenon collisions obey a power law, yield(& f)

+f ', and we have made the first experimental
determination of the exponent r for heavy-frag-
ment data. By study of the isotopically resolved
fragment data, a new picture of the fragmentation
process emerges.

The combination at the Fermilab Internal Tar-
get Laboratory of the circulating proton beam
(- 10"protons/sec) and the internal gas-jet tar-
get' (- 10" target atoms/cm') provides a unique
opportunity for studying nuclear fragments from
proton-nucleus collisions over an incident ener-
gy range from 80 to 350 GeV. In pa, rticular, the
high counting rate allows the use of a long flight
path together with a high-resolution gas ioniza-
tion detector to obtain isotopically separated
fragments whose lifetimes are greater than -200
nsee. Our detector system was designed to mini-
mize the amount of material between the beam-
jet interaction area and our detectors in order
to measure the heaviest and slowest fragments
possible.

Two single-arm time-of-flight (TOF) spectrom-
eters were designed, one for light (Af ~20, Z
-9) energetic fragments positioned at 76 deg in
the laboratory, the other for slower and heavier
fragments (Af ~40) positioned at 34 deg. Only
the 34-deg telescope is shown in Fig. 1. The
TOF spectrometer shown consists of three timing
devices employing microchannel-plate (CP) de-
tectors based on the design of Zebelmann et al. '
and a gas-semiconductor ionization chamber
based on a design by Fowler and Jared. ' The gas
detector was operated at 20 Torr, the equivalent
of about 4 p,m of silicon.

Hydrogen and noble gases (Ne, Ar, Kr, Xe)
were combined to provide targets of up to 100 ng/
cm'. Target gases for the data reported here
were mixtures of 90% H, -I0'Pc Xe and 90% H, —
10% Kr. A monitor telescope at 66 deg served
to normalize the data against the proton-proton
elastic scattering.

Fragment charge was determined by plotting~ versus total kinetic energy, E&,„~. At very
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FIG. 1. Experimental apparatus. Only one spectrom-
eter is shown.

low E „r„(&10MeV), the curves of different
+Zf' merge and become inseparable. Thus we
introduced a charge-dependent low-energy soft-
ware cut. Masses for the data reported here
were calculated by using the TOF start from CP1
and the stop from the silicon E detector in the
gas ionization chamber. Corrections affecting
mass resolution were made for the energy loss
through the TOF detectors (-20 pg/cm' carbon
in each CP) and the detector window (-50 pg/cm'
of stretched polypropylene"). The flight time was
corrected for the effects of deceleration as the
fragment deposited ~ in the gas detector. The
average corrections for a carbon fragment were
less than 1 MeV in energy and less than & nsee
in flight time. A mass resolution of ~/M-1. 5%
was achieved over the full range of masses with
a cutoff energy of less than 10 MeV. A mass
spectrum of the aluminum isotopes is shown in
Flg. 2.

The total yield for a given fragment was deter-
mined by extrapolating both the low- and high-
energy portions of the kinetic energy spectrum.
In the worst case, this represented a 39% cor-
rection to the yield (charge 12 from krypton).
The average correction was less than ].0%. Fur-
thermore, the peak in the kinetic energy spec-
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FIG. 3. Kinetic energy spectrum of ' C from xenon.
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FIG. 2. Aluminum mass spectrum from krypton.
The data have been corrected as discussed in the text.

trum was observed for all fragments with Zf &12
from both targets (see Fig. 3). Since fragment
production over this energy range displays little
dependence on proton incident energy, the frag-
ment isotopic yields for xenon and krypton, cor-
rected for the above-mentioned effects and for
multiple scattering, have been summed over inci-
dent proton energies, 80 -F~ -350 GeV. Full ex-
perimental details will be discussed in a further
public ation.

The simplest way to present the data is to sum
all the fragments of a given &z (fragment mass
number) and plot the isobaric yields as a function
of the fragment mass number. The mass yields
for Xe are shown in Fig. 4. The results for kryp-
ton are very similar in shape. We estimate the
relative error between data points to be on the
order of several times the statistical error,
which for Af =30 is approximately 1.5/~. In addi-
tion, we have included a point for mass 1. This
point has been inferred from emulsion data. ' The
neutron contribution was assumed to be 1.3 times
that of the proton. In a multigigaelectronvolt
proton-nucleus collision an average of twenty
tracks of "heavy" charged particles (protons) are
found. When this occurs there is an -8'/0 prob-
ability of finding a 'Li fragment (hammer track).
Using our own data we find that 'Li represents
approximately 7' of the yield of all fragments
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FIG. 4. Mass yield of fragments from xenon vs mass
number, Af, corrected for effects discussed in text.
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greater than and including lithium. Thus we be-
lieve with some confidence that we are justified
in using the emulsion data in order to estimate
the mass =1 yield with 'Li as a cross normaliza-
tion. Multiple scattering and energy loss in foils
and the gas detector window limited the observa-
ble fragments to those whose charge was less
than or equal to 14. Although our results were
obtained at 34', we believe that they are a fairly
accurate reflection of the mass yield integrated
over angle. We have observed" that for the tar-
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gets of present interest the fragment angular dis-
tributions are isotropic in the laboratory to with-
in 2O%.

The data, at low masses, say +&11, show fluc-
tuations due to the rapidly varying number of ob-
servable isobars as a function of fragment mass.
For instance, for Af =8, only 'Li and 'B live long
enough to be seen in our apparatus. Thus the da-
ta appear smoother as the fragment mass in-
creases since the number of stable isobars ap-
proaches a constant. The data below mass 11
have been compared to the isotopically resolved
data from an earlier experiment conducted by
our group with an entirely different apparatus. "
The two sets of data are in agreement within our
estimated systematic errors. We have fitted the
mass distributions by a, power law (curv
4). Masses between 4 and 12 were exclu
the fit for the reasons stated above. The
the exponent T is 2.64 and 2.65 for xenon and

krypton, respectively. It is obvious that a power
law can fit only the smooth features of the data.
The value of T, however, is well determined by
the data, since a change in 7 of 0.2 for Af =20
changes the yield by a factor 20 ' =1.8. Indica-
tions of such a power law can be seen in the data
of Ref. 5 if they are replotted and an average A&

is assumed for a given Zf. However, no such
assumption need be made to determine the pa-
rameter 7 from isobarically resolved data. It
should be pointed out that the mass yield from
heavy targets is known to rise after achieving a
minimum at about mass 40. This increase, due

to several competing processes such as deep
spallation and fission, will obscure the power-
law falloff in the high-mass region. "

We believe that the values found for ~ are signi-
ficant and are characteristic of a system under-
going a statistical clustering. Suppose that fol-
lowing the initial high-energy proton-nucleus
collision, the nuclear remnant is left in a state
of high excitation, one in which the correlations
as evidenced in the shell structure of normal nu-
clei have been destroyed. As a result of the col-
lision, if the phase space available has increased
substantially and if the system has sufficient
time prior to disassembly to involve many nu-
cleons, then, through random collisions, the
system could undergo cluster formation. We
can gain some understanding of the problem by
studying the general problem of clustering. Per-
colation theory" deals with the general question
of clustering in any number of dimensions. An

array of lattice sites, each of which has a. prob-
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ability p of being occupied, is populated random-
ly. No interaction between lattice sites is as-
sumed. A cluster size is defined by the number
of contiguously occupied sites. It is found that
the cluster distribution obeys a power law near
the percolation (critical) point in analogy with a
critical point in matter. The value of the expo-
nent is 2.1 for a three-dimensional lattice. Simi-
la.rly, theoretical studies of liquid-gas phase
transitions indicate that near a critical point,
the distribution of cluster sizes, i.e., the number
of constituents contained in a droplet, should obey
a, power law whose exponent is between 2 and 3."
Real gases are indeed found to exhibit exponents
that lie in this range as determined experimental-
ly. " Whether or not we have observed such a
phase transition in analogy with classical gases
is still an open question. The evidence presented
above leads us to conclude that fragments are
formed statistically in the multibody breakup of
a highly excited nuclear remnant. The state of
the remnant must be such that the constituents
can form a cluster distribution characteristic of
a phase transition near a critical point. This
state is therefore distinctly different from the
one found in normal nuclei.
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Experimental evidence is presented for a new resonant process in ion-atom collisions
which is analogous to dielectronic recombination in free-electron-ion collisions. Reso-
nant behavior observed in the yield of projectile K x rays in coincidence with single-elec-
tron capture in 70-160-MeV S+Ar collisions is attributed to simultaneous electron cap-
ture and K-shell excitation. The data indicate that this resonant process is an important
mechanism in inner-shell vacancy production in the energy range studied.

PACS numbers: 34.70.+e, 32.30.Rj, 34.50.Hc, 97.10.Ex

It was recently suggested that projectile K-
shell excitation may occur simultaneously with
electron capture in ion-atom collisions. ' Such a
process, which is due to the Coulomb interaction
of the projectile with the target electrons, is
qualitatively analogous to an inverse Auger transi-
tion and is expected to be resonant for projectile
velocities corresponding to the energy of an exit-
ing electron in the Auger process. Since the cap-
tured electron is initially bound in the target, the
width of the resonance should be reflective of the
distribution of electron momenta in the target.

In the case of free-electron recombination, this
process is called dielectronic recombination
which occurs when a highly stripped ion captures
a continuum electron and simultaneously excites
an electron from the ground-state configuration
of the ion. Since radiation can be emitted follow-
ing the formation of this excited state, dielectron-
ic recombination is believed to be an important
energy-loss mechanism in high-temperature fu-
sion plasmas. ' Dielectronic recombination has
been identified in plasmas but cross sections for
this process have never been successfully meas-
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