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An exact renormalization-group transformation is developed which describes how the
transition to chaos may occur in a universal manner if the frequency ratio in the quasi-
periodic regime is held fixed. The principal low-frequency peaks in an experimental
spectrum are universally determined at the transition. Our approach is a natural exten-
sion of Kolmogorov-Arnold-Moser theory to strong coupling.

PACS numbers: 47.20.+m, 02.30.+q

Our understanding of the onset of turbulence,
within the context of low-order dynamical sys-
tems, has been extended from a qualitative de-
scription of various temporal regimes to a quanti-
tative and universal set of predictions in the case
of successive period doublings. "Although peri-
od doubling is not even the most prevalent route
to chaos in low-aspect-ratio experiments, Feigen-
baum's analysis has aroused great interest be-
cause the theory predicts that the Navier-Stokes
equations are rigorously modeled by a one-di-
mensional map at the transition. His arguments
are analogous to those used to describe scaling
in critical phenomena. In this paper we show by
renormalization-group methods how the transi-
tion from quasiperiodicity (flow with two incom-
mensurate frequencies) to chaos can be made to
proceed in a quantitatively universal manner. '
This universality has not yet been seen experi-
mentally, even though quasiperiodicity is a com-
mon percursor to turbulence, because it is as-
sociated with a critical point that can only be
probed by varying two parameters in a consistent
way.

On the mathematical side, our study suggests a
means of realizing the strong-coupling limit of
the small-divisor perturbation theory of Kolmo-
gorov, Arnold, and Moser, who examined weakly
nonlinear Hamiltonian and dissipative systems. '
They realized that it is essential to work at a
fixed frequency ratio or winding number which
will become the second relevant variable at our
fixed point. Conventional assumptions about the
topology of the flows in function space generated
by our renormalization group, we believe, imply
the existence of a piecewise analytic variable
change (a conjugacy), back to unperturbed quasi-

periodic motion. ' It is more interesting to study
dissipative systems rather than Hamiltonian ones
in this context because a fixed point found in one
dimension is likely to -carry over, rigorously,
to an arbitrary number of dimensions just as one
found for period doubling. 2

Our calculations resemble Feigenbaum's treat-
ment of period doubling in that we construct a
transformation on a space of functions and find
a nontrivial fixed point with the requisite linear-
ized eigenvalues. ' The alternative procedure,
suggested by the Kolmogorov-Arnold- Moser
proof, of successive variable changes is useful
to keep in mind. '

The following map of an annulus illustrates suc-
cinctly the transition we propose to study.

Let

r,„-1 =A(v,. —1) —(a/2w) sin(2m', . ),
+C0+f .

~
—1

where (r,y) are polar coordinates and 0 &X&1.
When X= 1 we obtain the "standard" area-preserv-
ing map of Chirikov. Otherwise, since (1) con-
tracts areas at a rate X, there can be at most one
invariant circle, r =r(q). Orbits on the invariant
circle may have either a rational winding number
p(v, a) =P/q corresponding to mode locking in the
differential system or an irrational p correspond-
ing to a flow with two incommensurate frequencies.
[In general p=lim, . „(q,. —y )/io. ] While a is anal-
ogous to the Reynolds number, the second rele-
vant parameter m should be thought of as a "bare"
winding number that is adjusted to keep p(~, a)
fixed as a increases.

Since the nth iterate of (1) contracts areas at
a uniform rate A.", this suggests that one can work
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with A. =O. This defines the one-dimensional dif-
feo morphism,

y,.„=f(y, }= p, + ~ —(a/2m) sin(2m@,.). (2)

The renormalization group may then be used to
justify the neglect of the radial contraction. The
strong-coupling fixed point occurs at a =1 where
f has an inflection point. For a & 1, (2) is non-
invertible and shows all the complexity of a one-
dimensional map, while for a &1 and almost all
irrational winding numbers, the orbits are ana-
lytically conjugate to a simple rotation: p'=y
+ p((u, a).'

We will consistently denote an irrational value
of p(~, a) by v and write its continued-fraction
representation as 1/[n, + 1/(n, +. . .)] . The lth
rational approximate to 0, obtained by setting
n~ = 0 for. f & I

q
is p) /g) .

The universal features of the quasiperiodic-to-
turbulent transition are restricted to low fre-
quencies or long times so that the renormaliza-
tion group is essentially functional composition.
Our construction, however, will preserve both
the character of f as a homeomorphism of the
circle and its rotation number which will have
important consequences when we consider spec-
tra.

Both to define and to implement our renormali-
zation group requires consideration of a larger
class of functions than just analytic homeomor-
phisms of the circle. Specifically, let S„be the
class of pairs ($,q) of analytic homeomorphisms
of the real line subject to the conditions (a) $(q(0))
=n(5(0)}, (hn)'(0) =(1I()'(0), (b) $(0) =n(0)+1, (e) o
& $ (0) & 1, (d) if $ '(0) = 0 or 1l'(0) = 0 for x & [7I(0),
h(0)] then $'(0) =»l'(0) = $"(o) =n" (o) = o b«h'"(0)
«and (kn)'"(0) = (nh)'"(0), (e) ~" (n(0)}&o,

'(7l(0)}&0 ($»l. . . , etc. , denotes composition).
Define a mapping 'l'„on S by

T„(),q) = (a(" 'go. ', n&" »l $ n '),

where n =1/[$" 'q(0) —$"q(0)] and obeys n & —1.
The image under T„of a member of S„satisfies
conditions (a)-(d), and in a neighborhood of the
fixed point, (e) in addition.

Define a homeomorphism of the circle f=f, „
with ($,q) E S„by identifying f with $ on [q(0), 0]
and with q on (0, $(0)] and denote the set of all
such homeomorphisms by S„. All analytic circle
homeomorphisms [e.g. , Eq. (2)] belong to S„.
The mapping T„ then induces a mapping T„on S„
for which it may be proven that

p(7'„(f)}=1/p(f) -n. (4)

T„ then simply removes the first term in the
continued fraction of 0 = p(f). Thus for any peri-
odic continued fraction, n,.„=n;, s ~ 1, one
could string together T =T„~ .T„.T„and
sensibly search for a fixed point of T. We will
henceforth consider only v=o'a=(5' '-1)/2 be-
cause then n, =—1 and T =T,. The corresponding
rational approximates are P, /q, =F, ,/F, where
I', are Fibonacci numbers and satisfy F„x=F

In this case, the fixed-point equations, ($*,»l*)
= T($*,q*), simplify considerably; in particular
a = $*(0)/[$*(0)—1]. There is then a trivial fixed
point corresponding to a pure rotation with $*(x)
=x+cG, a= —cG —1=—1/vG, which has one un-
stable direction with eigenvalue ~ = —&'. The
physical meaning of 5 is clear from (4) since if

p(f) =F, ,/F, then p(Tf) =F, ,/F, , In analogy
with period doubling, 6 measures the accumula-
tion rate of the cu, in (2) for which f has a F, ,/
I, cycle. However, here &„corresponds to
quasiperiodicity and not to incipient chaos.

At the nontrivial fixed point we can consistently
assume that $* and q* are analytic functions of
x'. By retaining terms up to x~ and using a
numerical technique suggested by Feigenbaum
we find n= —1.288575. Note that even if f is
anal. ytic, T'f is nonanalytic but continuous at the
origin and end points of the unit interval. How-

ever, there is good numerical evidence that the
conjugacy that relates T"f to any T'f is smooth
for any f on the critical surface, i.e., lim, „'I'f
=f*. This fact, together with the existence of a
fixed point f*, establishes that spectra are uni-
versal in the sense discussed below.

Wj.thorn the space of e~genfunctions, expandable
in x' and consistent with conditions (a)-(e), we
find one unstable eigenvalue 5 = —2.833 61 with
the same meaning as before. When arbitrary
powers of x are allowed, we are able to show
analytically from (a)-(e) that there is only one
additional relevant mode with eigenvalue y = n'
=0~ ', which corresponds to the addition of a
small linear term to the fixed point. (The rela-.
tion y= 0.' is true for all winding numbers for
which a fixed point exists. ) Depending on its
sign, the map either iterates into the chaotic
regime where it initially has two critical points
and is noninvertibl. e, or remains invertible and
iterates toward the trivial fixed point. In the
space of all f & S with p(f) =v the nontrivial fixed
point is a saddle and the trivial one a sink under
T. If one assumes globally that there are no other
fixed points then we conjecture that Kolmogorov-
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Arnold-Moser-like results follow for all maps
attracted to the trivial fixed point.

Another may of displ. aying the scaling behavior
of (1) or (2) is to examine how points map back
close to the origin after q, iterations of f [n.b. :
p, /q, - v = p(f)] . We therefore define

For a suitable choice of a, l.im, „f,=f exists as
an analytic function on the line and to within a
scale change is identical with $*. The recursion
formula for q, generates nonlinear equations for

8

We bel. ieve that a transformation l.ike ours
which preserves the circle homeomorphism struc-
ture and keeps track of the minding number is
preferable to a straightforward iteration of f for
the following reasons: (1) We can identify the
universal numbers 6, y, etc. , as eigenval. ues of
T and make clear their physical meaning. (2) The
minimal fixed-point functional equation is obvi-
ous, which, especially for (T& OG, is not clear
otherwise. (3) There exist scaling equations for
the conjugacy associated with f*=f& „::which
fix the experimental spectra. (4) It allows for
mathematically rigorous proofs; e.g. , Jonker and
Rand have proven that the fixed-point and hyper-
bolic structure of T exist when $ and rl are ana-
lytic functions of x~x~', 0-«&1.

Our renormalization group can readily be ex-
tended to higher dimensions and we believe that
the fixed-point structure mill remain unchanged. '
Specifically, for annular maps [e.g. , Eq. (1)], let

A(r, cp)=(e'r, ny) and for v=v~ define

T&»(E F)=(AFA-~ AREA-~)

where E and I are analytic homeomorphisms of
the plane subject to conditions analogous to (a)—
(e) . A nontrivial fixed point of T"' is E *(r,cp )
= (0,]*([r q+']' ')), I'*(r,q ) = (0, rl*( [r + q ']' ')) .
Our Ansatz becomes plausible if one considers
the family of curves along which the flow con-
tracts exponential. ly onto the invariant curve, I .
Belom the critical point they intersect I' trans-
versally, but at the critical point after suitabl. e
iterations and rescalings they are tangent and
converge to the family x=-p'+ const.

We will assume that our one-dimensional fixed
point applies in higher dimensions and by invok-
ing universality, analyze only the conjugacy k*
that reduces f* to a. pure rotation, i.e. , h* 'f*
xh+(6) = 6+ o~, The quantity of greatest physical
interest is the periodic part of h*, y = h* —0,
mhich is continuous but nondifferentiabl. e. Its
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Fourier transform, X(n), has prominent peaks at
all the low-order Fibonacci series and scales as
~-1 8

If we use the natural range for h* set by T, 1/
(n —1) & y ~ a/(o. —1), and allow —o~' & 6 & &z~,

then h* is continuous on the interior of its domain
and satisfies

n 'h+(- 8/v~), —o'~' & 6 - v~', (6a)
h*(e) =

f* '(h*(9+0~ —1)), o~' ~ 0& v~. (6b)

Equation (6a) is a consequence of how T acts on
the invariant measure of any f with p(f) = o'~ and

may be generalized to other minding numbers.
Once h* is known on (cr~', O'G), (6a) recursively
determines the rest of h* on a sequence of inter-
vals that converge onto the origin. The second
equation smoothly relates h* on (- v~', O'G') back
to (0~', vG) so that (6a) and (6b) together should
determine h*.

To proceed further analytically it is convenient
to use a piecewise linear approximation to f*
which utilizes a geometrically convergent set of
vertices to approximate x' near the origin. The
equation Tf =f is satisfied everywhere. The cor-
responding value of n obeys o'+e' —1=0, e
= —1.285 3. The principal amplitudes in y differ
by no more than 10% from their exact values.
Over the interval required by (6b), f '(y) = (u'
+ n)y+1/(1 —n). The relation )t(n)-n ' for n
=I,E,. +mP', . » i »1 follows rigorously.

The same scaling rel. ation for X(n) at the exact
fixed point is proven from the lemma that any
sufficiently smooth periodic function of h* has a
Fourier series bounded by g

' for large q. The
same l.emma is used in the demonstration that
spectra are universal. We conclude by suggest-
ing how a laboratory experiment may be done to
test the theory developed here.

In the quasiperiodic regime, an experimental
spectrum is a series of peaks at all integer com-
binations of tmo incommensurate frequencies

Any other choice of reference frequencies
is related to (~„&u,) by an integer-valued matrix
with determinant + 1. Precisely the same condi-
tion is necessary and sufficient for the tails of
the continued fractions of two irrational winding
numbers v and 0' to agree. Our renormalization
group implies that any choice of (&u»&u, ) for a
given experimental spectrum is associated with
the same fixed point.

The easiest way to control. the frequency ratio
o = &u, /&u, in an experiment, as the Bayl.eigh num-
ber varies, is to introduce &, by means of an ex-
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ternal force. The optimal choice of o experi-
mentally is o~ since it is the least susceptible to
mode locking and one can expect to see the larg-
est number of self-similar bands for a given lev-
el of noise.

There is a one-to-one relation between the low
frequencies in the spectrum of a time series and

X which completely determines the former to
within an overall scale. Specifically, the com-
plex amplitude at ~=m, e, —rn, ~» 0- co(~„ is
proportional. to y(m, ). The principal peaks in g
correspond to (m»m, ) = (E»E, ,) (v = oo), and

their power scales as o~ ". The condition that
a given m be asymptotic is that it may be repre-
sented in the form m,F, +mP', , with l»1. An

experimental determination of 6 from the ac-
cumulation rate of periodic orbits will be dif-
ficult since to be useful it must distinguish be-
tween the trivial value of v~ '-2.61803 and
2.833 61.
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