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Exactly Solvable Model of a Physical System Exhibiting Universal Chaotic Behavior
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A model of a simple nonlinear physical system, the driven diode resonator comprised
of an oscillator, resistor, inductor, and diode in series, is shown to reduce exactly to a
one-dimensional, noninvertible map. With use of a model of the diode which includes the
forward bias voltage, reverse recovery time, and junction capacitance, the response of
the system is calculated exactly. The solution exhibits the period-doubling route to chaos
with universal scaling.

PACS numbers: 05.40.+j, 02.90.+p, 47.25.-c

Period doubling and chaotic behavior were re-
cently reported by Linsay' and by Testa, Pyrex,
and Jeffries' for the response of a driven anhar-
monic resonator consisting of a series circuit
composed of a resistance, inductance, and a Va-
ractor diode as shown in Fig. 1(a). This diode
resonator was shown to follow a patterned route
to chaos in good agreement with the universal be-
havior found in iterated, unimodal, one-dimen-
sional maps. ' ' Several recent experiments on a
variety of nonlinear physical systems have re-
vealed similar patterned chaotic behavior"' and
there is an active effort to develop an understand-
ing of the dynamics of complex nonlinear physical
systems by using much simpler models which are
universally applicable to large classes of these
systems. "" It is important to have a clear
understanding of the physical conditions present
in the nonlinear system which lead to its approxi-
mate description by a simple model. such as a
one-dimensional map. It is the purpose of this
paper to present a realistic physical model of the
nonlinear diode resonator and to show that this
model. provides, for the first time, an exact de-
scription of the response in terms of a one-di-
mensional, noninvertible mapping function which
is explicitly defined.

The previous work" on the diode resonator at-
tributes the period doubling and chaotic behavior
partially to the nonlinearity introduced by the
voltage-dependent capacitance of the Varactor.
However, Hunt' commented that another property
of such diodes was responsible for the behavior;
namely, the rather large reverse recovery time.
We show here that both. a finite forward bias
voltage and a finite reverse recovery time are
required if the diode resonator is to exhibit cha-
otic behavior. We totally neglect the changing
capacitance of the Varactor and believe that it is
unimportant with regard to the salient features of
the response. We assume that the diode will be-

{b) {c)

FlG. 1. (a) Driven Varactor-diode resonator circuit.
(b) When the diode is conducting, it is replaced by an
emf=~f. (c) %(hen the diode is off, it is replaced by
capacitance C.
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stop conducting at t, (n), but rather the next cycle
is started with t, (n+1) = t,(n).

Given an initial value of A„we can use the
above step-by-step process to determine I(t). In

fact, it is enough to be given
~
I ~, the maximum

forward current, during one cycle to determine
I(t) uniquely at all subsequent times. The value
of

~
I

~
together with the condition that 1(t) is

minimum at that point establishes both the time
t' at which the minimum occurs and A, . The
conditions are

(4)

where I(t) is given by Eq. (2). The first two con-
ditions give the following equation for t':

V(t)= V, cos~t'=- iI iR —V~. (5)

where
~
I

~ „ is the maximum forward current
through the diode during the nth cycle, V, is the
magnitude of the drive voltage, and the mapping
function, I", is given by the step-by-step proce-
dure described above. The function I contains
the circuit parameters R, L, C, T, and I, in

addition to e and V, . However, in a given experi-
ment" the circuit parameters and drive fre-
quency are held fixed and the response is studied
as a function of the drive voltage V, . It is clear
that this system will exhibit behavior consistent
with the properties of iterated one-dimensional

[This condition is also evident by inspection of
Fig. 1(b). ] The domain for t' may be limited to
the interval 0 &('&2m/~ without loss of physical
generality. Within this interval there are two
distinct solutions to Eq. (5). However, the third
condition of Eqs. (4) leads to the condition —sin~t'
&0 and only one of the solutions survives. Having
determined I', we use Eqs. (2) and (4) to deter-
mine A, :

A, = —( V,L &u/RZ, )sin(&et ' —6, )exp(Rt '/L).

This leads to the unique determination of I for all
subsequent times.

Thus, the proposed model for the diode in a
series diode resonator circuit leads directly to
an exact one-dimensional mapping function for
this nonlinear physical system. Successive val-
ues of II j may be expressed as iterations of a
one-parameter family of one-dimensional maps
of the form

maps as described by Feigenbaum' and others. '
In order for a one-dimensional map to exhibit

chaotic behavior, it must be noninvertible. It
should be noted that the mapping function de-
scribed above is noninvertible, i.e. , given ~I ~„„
we cannot always determine

~
I

~
„uniquely. Time

can be reversed in the solutions given by Eqs. (2)
and (3), but v„cannot be determined directly un-
less ~I

~

at the earlier time is known. Inverting
the process requires applying self-consistency
between w„and the earlier jI„( which results.
Computer calculations of I discussed below show
that the map is noninvertible and that there may
be two solutions to this self-consistency problem.

We have performed computer experiments mir-
roring the measurements previously reported. '
The computer calculations were done by starting
the resonator at t = t, = m/2e with the diode con-
ducting and I(t, ) =0 (which determines A, ) and
then following the step-by-step procedure de-
scribed above using sixteen-place precision.
Typical circuit parameters were as follows:
u„Q = L~,/R betw—een 10 and 50; ~ =—2m/&u,

—= T,
and I, such that 0& 7„&0.4T,. For A —= V,/p&=2. 0,
I(t) was found to converge quickly to a periodic
function with the period equal to that of the drive,
2n/&u As t.he parameter A was increased, we
observed the period-doubling bifurcation route
to chaos expected for a unimodal one-dimensional
map. ' For A. in the periodic region the solution
became periodic to within one part in 10' after a
few hundred cycles as long as A. was not too close
to a bifurcation point. At birfurcation point, A.„,
the period doubles to 2" times that of the drive,
where n =1, 2, . . . . A careful study of the values
of X„was performed and the scaling parameters
5„=-(A„—A.„,)/(A „„—A „)were ca.lculated. For
the circuit parameters ~=0.9+„@=50, ~ =2m

/cu(0. 9)', and I,R/Vz =1.0, successive bifurca-
tions were observed at A., = 2.40(1), X, = 5.070(5),
A, =6.184(1), A., =6.473(l), A, =6.5351(2), and A., =

6.54880(5). The estimated errors in the last dis-
played significant figures are shown in paren-
theses. We obtain 6, = 2.40(2), 6, = 3.85(5), 5, =

4.66(20), and 5, =4.53(15). These are consistent
with the universal limiting value 5 „=4.669. For

the solution appeared to be chaotic except
for windows in A. where solutions with period 3,
6, and 5 were observed, similar to the behavior
reported by Testa, P6rez, and Jeffries. '

A numerical calculation of the mapping function
F may be obtained by plotting (I )„„vs (I„(„in
the chaotic region. Figure 3 shows the mapping
function obtained for A =18. The map for an orbit
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0~ the reverse recovery time, 7.„, of the diode is
set equal to zero, no bifurcations occur and the
period-one solution is always stable. We are
conducting a detailed study of the shape of the
mapping function I' and its dependence on the
circuit and drive parameters.

CR

C)

8. 8 0.9 1.0 1. 1 1.2 1.3 1.4 1.5 1.6 1.7
I„n

FIG. 3. The one-dimensional mapping function
~I ~„+& vs ~I ~„(in units of V&/A) for the 744th through
the 999th cycle for Vo/VI = 18 in the chaotic region.
The circuit parameters in this case were co vp Q
= 15, T~ = 27t/cv, and I~&/Vf 2 0.

which nearly has period 5 is also indicated in
Fig. 3. A transformation of the type ~„=const
—

~
I

~
„will turn the mapping function upside down

so that it has the rounded maximum required of
a smooth unimodal mapping function. ' The map-
ping function shown in Fig. 3 is noninvertible
since certain values of ~I ~„„may be reached
from two different values of

~
I

~ „.
The stability of periodic orbits depends on the

shape of the mapping function which, in turn, de-
pends on the circuit parameters and p;. We have
found that if either the forward bias voltage,
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