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Theory of the Nonhydrogenic Stark Effect
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photoionization spectra of alkali atoms in a dc electric field are calculated semianalyti-
cally and agree with experiment. Cross sections depend on two distinct sets of parameters:
(a) zero-field dipole matrix elements and quantum defects and (b) eigenfunctions of the ex-
ternal Coulomb-Stark potential. The field's effect on photoionization is condensed into a
density-of-states matrix &+'!4'), whose use may be appropriate to long-range effects in
all spectral phenomena.

PACS numbers: 32.60.+ i, 32.70.-n, 32.80.Fb

Observations of the dc Stark effect near thresh-
old in alkalis led to the discovery by Freeman
et al. ' of resonances extending into the ionization
continuum. Figure 1(a) shows a recent photo-
ionization spectrum of Na O'P, y, from Luk et al. '
The region below threshold exhibits asymmetric
resonance peaks, whereas above threshold one
observes only a series of modulations. I report
here the result of a calculation, shown in Fig.
1(b), which reproduces the experimental data;
details of the theory and of the calculation will
be reported elsewhere. ' The presence of a non-
hydrogenic core produces the interference dips

below threshold, but only attenuates the modula-
tions above threshold calculated for the simple
case of hydrogen. "

The calculation uses two distinct types of input
parameters: (a) zero field s-pectral parameters
of the atom, namely, dipole matrix elements and
quantum defects, ' and (b) semianalytical param-
eters of the wave function in the Coulomb+Stark
potential (in atomic units),

which prevails outside the Na' core. These pa-
rameters are obtained with sufficient accuracy
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FIG. l. (al Experimental phototonization spectrum of Na 9 P3iz in a field E= 9.59 kV/cm, vs photon energy
~~, just below threshold (Ref. 2). Note labeling of Stark resonances. (b) Theoretical cross section 0~, Eq. (12);
dashed line, u . Asymmetric peaks labeled as for (a). Stark-induced oscillations extend past & =0 with the same
spacing as in H (19.6 cm ').
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4', (r) =cosh, f, (r) —sinb, g,„(r), (3)

where the quantum defects p, , =6,jv are taken on

the branch ——,
'

& jL(, , &+ —,', and the value & of the en-
ergy is omitted. The function f, (r) is a hydro-
gen function regular at ~ = 0, including both the
spherical harmonic &, (9, y) and the radial Cou-
lomb function, while the irregular function g, (r)
lags in r by 90' with respect to f, (r) but has the
same energy-normalization amplitude at large ~.

The regular and irregular parabolic functions
ana, logous to f, (r) and g, (r) are called here
jets ~(r) and ys (r). Separation of variables in
the parabolic coordinates" {$=r(1+cos 9),
=r(1 —cos6), q j yields

(r) = [e'"'(») ' ']:-s."($)Ts„'(n), (4a)

Xs '(r) = [e ™'(2~)'~']'-. s„'(VTs„'(n) . (4b)

The azimuthal factors in (4a) and (4b) appear
also in Y, (8, y), but P, (cosy) is replaced here
by an eigenfunction =s ~($) of the upfield coordi-
nate $. The separation parameter P =—P(~, E; n„

by a %KB analysis of the Stark effect in H.
The separation of these effects is made possible

by the remark~'7 that the Stark potential in Eq. (1)
is negligible compared to the Coulomb term
when r «E '~' a.u. (1 a.u. = 5.14 x 10' kV jcm).
Over the range of distances

~,-t a.u. ~~«S-'~' a.u. (2)

the potential surrounding the Na' core is repre-
sented by just the Coulomb term of (1), and the
Schrodinger equation is equally separable in
spherical and parabolic coordinates. ' The Cou-
lomb region (2) thus marks the overlap of regions
of spherical symmetry, ~«E ~' a.u. , and para-
bolic symmetry, r &x,. The photoabsorption
process proper is handled by standard atomic
procedures in spherical coordinates, ignoring
the Stark field. The subsequent escape of the
electron is then treated in parabolic coordinates,
appropriate to the external Coulomb-Stark poten-
tial.

The wave function of the excited electron follow-
ing photoabsorption, within the radial range (2),
is represented in spherical coordinates by'

m) is the effective charge allocated to $ (with
1-P going to rj). The eigenvalues of P are set at
each c, I'", and m by the number n, =0, 1, 2, . . .
of nodes of the wave function "s ($), which is
bound by the rise of the potential (1) as $ -~.
The regular function T(q) is normalized per unit
energy and oscillates at g- as an Airy function;
for e & e, = -2[(l —P)E] ' it tunnels in q through
a broad barrier of the potential (1). The irregu-
lar function T in Eq. (4b) has the same energy-
normalization amplitude as T at g- ~ but its
oscillations lag in phase by 90 in the range (2).
However, the oscillations of Y with respect to T
outside the barrier, as g-~, lag instead by a
phase parameter y s (0 & y s «), which reduces
again to —,'& only at energies sufficiently above &,.'

The connection between the spherical and para-
bolic basis functions (3) and (4) is established
first by a transformation Uq, between the regular
functions,

0s'(r) =E, &s,f, (r),
A(r) =Z s(~ ') isis'(r), (5)

where the sums extend over all l or P (i.e., n, ),
and I have omitted the common subscript m. The
matrix element

U„=a„ws /X,

from Ref. 7 depends explicitly on the energy-
normalizing amplitudes N, of f, and N s of gs
[called (N,„)' in Ref. 4], whose squares
represent the spectral density of states of each
channel. The coordinate transformation a~, is a
polynomial of degree l —m in 2P —1. Note that
at constant e, U» is nonoxthogonal unless I' = 0,
because f, and g s~ pertain to different potentials
at r-. .3

The ana. log of the transformation (5) for the
irregular functions follows from a key remark
by Fano'. The irregular component in Eq. (3)
arises from the departure of the Na' core po-
tential from a pure Coulomb potential at r &x,.
The standing-wave Green's function G'(r, r')
that propagates this potential inhomogeneity is a
solution of the Schrodinger equation for the Cou-
lomb potential alone, and must therefore coincide
in spherical and parabolic coordinates:

G'(r, r') =~Qg, (r)f (r') =vQ ys (r)cscys Ps (r'),
lm am

y'&y «E '~' (7)

The important factor cscys arises from the change in the relative normalizations of T(7)) and T(rj)
across the barrier of the potential (1). Equations (5) and (7) imply the transformation of the irregular
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functions,

yz (r) =g, sinys(U ')» g,(r), g, (r) =gqU, 8cscy8g~ (r). (8)

The continuation of the final-state function (3) beyond the region (2), i.e. , to where the Stark field be-
comes important, is thus represented in parabolic coordinates through Eqs. (5) and (8) by

e,(r) =cosb, gs(U '), Bys~(r) -sinb, ggU, 8 cscy g yg~(r) .
Finally, it is the superposition (9) which must be normalized per unit energy, thus combining the ef-
fects of (a) the short-range spherical phase shifts 5, due to the Na,

' core, (b) the long-range parabolic
phase shifts yq due to the Coulomb-Stark barrier, and (c) the transformation US„Eq. (6). Normaliza-
tion utilizes the overlap matrix of the set j@,j,

&@,. 'jC, )= j(cosb —sinbh )(H ) '(cosb-h sinb)+sinbH~sinbj, ., b ~ b(e' —e), (10)

with cosh, sinb, and coty diagonal matrices and the cross-term overlap & qadi„. ~ pre ~) =cosy &(e'- e)
X Q ~'5~m'm

The photoabsorption cross section now reads

(12)

where ~0) is the initial state of the atom, r„=z for ~-polarized light, and r =(I/02)(x +iy) for v'

polarization. Matrix inversion of (10) does not apply to b(e —e), which has been absorbed into the di-
pole matrix elements. Equation (12) thus sorts out (a) atomic contributions, i.e., zero-field dipole
matrix elements &+, j x~ 0) and the cos 5, and sinb, terms from the overlap matrix (10), and (b) Stark
effects embodied in the matrices H. .. and h, , The factor &+'

~
+) ' thus acts as a "density-of-

states" matrix which modulates the distribution of zero-field oscillator strengths. " In hydrogen all
5, =0 and &4"'~4') ' is just H~. For other atoms inversion of the symmetric matrix (10) is required
only in the subspace where 6, &0.'

A typical resonance profile below threshold reduces to the form"

1+tan 6
[&yi

~
y) j.

] H E
(1-h tanb )'+(H tanb )'

where 8» is Lorentzian, h „"is its dispersive
companion, and both include a background from
nonresonant channels. This expression is recast
as a Beutler-Pano profile in Ref. 3. It is made
asymmetric by the factor coty included in h,
whose sign reverses as y increases rapidly by
=v through a resonance. We see from Eqs. (12)
and (13) that the interference dip will lie on the
high- (low-) energy side of a resonance for p, &0

(p, &0); cf. Fig. 1(b) for Na, with p., =1.35. Above
threshold these interference effects disappear
(all ya=-,'m so that h =0) and Eq. (13) is approxi-
mately

I &e' ~c) ']
=1+(H„~—1)cos2~ p„~ =- 0, (14)

assuming H» "-1 = O(10 '). The nonhydrogenic
spectrum at c = 0 thus oscillates about unity, like
the hydrogenic series of modulations B» —1
and at the same positions, but the modulations
are inverted" when cos2~y, , is negative (e.g. ,

(13)

=2.65 in Rb ). In the limit F-0, the modulating
factor &+'I +& ' reduces the cross section (12) at
~$0 to its proper continuous and discrete" limits
and the interference terms with l' cl vanish.

The threshold modulations depend on light po-
larization through the m dependence of the poly-
nomial U8, ~aq, . They are largest for minimum
I~I (usually m=o) and maximum I —I~I in the
final state. ' The extension of Eq. (12) to jj -coup-
led final states 4', is straightforward, though the
analogs of Eqs. (13) and (14) are more compli-
cated. The procedures developed here should
apply as well to other external fields, to non-
alkali atoms, to molecular systems, and even
to other processes, as a result of the general
nature of the derivation of Eq. (12).
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OSee Ref. 7, Sec. 77. In Bef. 3, (() and &(q) are
called x&(() and x2('o) ~

At & ~0, the wave functions (3) are normalized 'per
unit energy" by the factor (dvld&l' = v . This implies
the usual replacement of the discrete oscillator strengths
f„by the average density dfId' = v f„, which matches
smoothly onto dfld& at &) 0. It is this interpolated
average which is modulated by (4'(e)

This follows from writing Eq. (10) in terms of the
eigenvalues ~ and the eigenvector matrix 8', A of the
product [(1—h tan~) '(H tan~) I » =~p&& pJ|(~'
where 0 (l', l &2 or 3.

Equation (13) is exact for a single ~& & 0 and l =l'.
' This effect would give rise to an aPparent phase shift

of the hydrogenic modulations by 180'. However, since
H„~ is asymmetric at &= ~he peaks are steeper on

the low-energy s ide—an actual inversion should be
observable.
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