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Spinodals in a Long-Range Interaction System

D. W. Herrmann, W. Klein, and D. Stauffer"
Center for Polymer Studies and DePaxtment of Physics, Boston University, Boston, Massachusetts 02215

(Received 2 August 1982)

A Monte Carlo study has been made of metastable states in the three-dimensional
Qlauber-kinetic-Ising model with 1org-range interactions. It is found that the properties
of pseudospinodals converge rapidly with increasing interaction range to those predicted
for the mean-field spinodal. A breakdown of the classical droplet model in the vicinity
of this spinodal was also observed.

PACS numbers: 64.60.My, 05.20.-y, 05.70.Jk

Experimental data on metastable states, e.g. ,
Monte Carlo simulations of the two-dimensional
and three-dimensional Ising model with short-
range interactions" and light scattering experi-
ments, ' gave no indication of a sharp spinodal
line as predicted by mean-field theories. Such a
spinodal line is a nearly unavoidable consequence
of all assumptions that a (local) free energy den-
sity can be defined for metastable states, as a
unique function of the local order parameter (and
its gradient). If this spinodal line exists, then
the susceptibility for magnetic systems or the
compressibility for one -component systems
should increase and go to infinity as this line is
approached. In fact, one does observe an in-
crease as one probes deep into the metastable
region, but the system becomes unstable before
one reaches the predicted spinodal line. ' An

extrapolation of these data then gives a pseudo-
spinodal which does not constitute any evidence
for an actual spinodal.

Here we present Monte Carlo simulations of the
metastable state of a three-dimensional system
with long-range interactions and pursue the ques-
tion of the existence of a spinodal line.

In our simulations we used a model proposed by
Domb and Dalton, ' the equivalent-neighbor model.
It bridges the gap between short-range interac-
tions and the case of infinite-r ange interactions
which gives a mean-field theory. Instead of the
usual nearest-neighbor interactions of the Ising
model, one assumes that each spin of the lattice
interacts with neighbors over several lattice con-
stants with a constant interaction energy 4.

The Monte Carlo calculations of the metastable
state of this model were done for interactions up
to seven lattice constants, i.e., q=3374 where q
is the number of neighbors with which a given
spin is interacting in a simple-cubic lattice with
periodic boundary conditions. The interaction
strength was K= Jk, T=~4(1/q). These calcula. —
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FIG. l. Inverse susceptibility as a function of the di-
mensionless field for various interaction ranges. The
full curve is the mean-field prediction at T/T, = 4.
The spinodal is predicted at h = 1.43 where the field
h = 2x (magnetic dipole) && (magnetic field)/k&7'. The
broken curve is a fit of the classical droplet model.
The only free parameter was fitted on our data near
h=0.

tions were done for a system of size 32' with a
new algorithm' which is especially suited for low
temperatures (here T/T, =0.45). The basic new
idea of the algorithm is to store for each spin i
the sum Q~, , &

o; o„(o=+1; j runs over the q
neighboring lattice sites) which is needed to eval-
uate the Hamiltonian of the system. If during the
Monte Carlo process the spin at the site i is
flipped then this sum is updated for the site i
and for the q neighboring spins. This greatly
simplifies the Monte Carlo procedure. Within
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the limit of accuracy we could not detect finite-
size effects by using 24' and 48' systems.

Figure 1 shows, for q = 6, 32, 124, 342, our data
for the inverse susceptibility as determined by
the magnetization fluctuations
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FIG. 2. Magnetization vs the dimensionless magnetic
field. Magnetizations for fg = 1.4 and 1.41 were deter-
mined by the fIat part of the corresponding curves in
Fag. B(a). The solid curve represents the mean-field
magnetizat ion.
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FIG. 3. Time evolution of the magnetization. The
broken line represents the mean-field magnetization
at the spinodal (h, = 1.43). In (a) the field is varied for
fixed interaction range, while (b) shows the evolution
of the magnetization at fixed fg = 5, when the interaction
range is varied. The magnetizations for q = 1330 and

q = 3374 already exhibit a metastable state.

These susceptibilities are compared to mean-
field theory for T/T, =~ (solid line), i.e., the
limit q —~, which predicts a spinodal point at a
field h, = 1.43. Clearly we cannot reach this point
but if we increase the number of neighbors q we

can probe deeper into the metastable region and

come closer to this point before the system be-
comes unstable, i.e., before the lifetime of the
metastable state (defined by the "flat" part of
the time-dependent magnetization') becomes too
short to extract reliable fluctuations. On the
other hand, the lifetime of the metastable states
quite close to the mean-field spinodal is suffi-
ciently long to extract a magnetization (see Figs.
2 and 3) which can be used to determine the sus-
ceptibility. An extrapolation of these data yields
a pseudospinodal point which approaches the pre-
dicted spinodal point with increasing interaction
range. Our figures make clear that this conver-
gence of pseudospinodals to the true infinite-
range spinodal is quite rapid.

Let h, ' denote the limiting h at which our sys-
tem becomes unstable for a given q in the sense
described above. We found that the ratio of the
mean-field correlation length g and the inter-
action range 8 of this limiting h, ' was constant,

(2)

where C is of the order of unity. This imp]. ies
that one cannot measure pseudoequilibrium pro-
perties in the region where g»R and where
deviations from mean-field behavior are expected.

Finally, let us look at the susceptibility given
by the classical droplet model with a surface ten-
sion independent of field and radius (broken line)

y ~Q, s'exp(hs —rs'~') . (3)

The coefficient I' entering this susceptibility was
fitted to the mean-field prediction for y near the
coexistence curve, where one expects the classi-
cal droplet model to work best (it should be noted
that the surface tension I" is the only free param-
eter in this fit). Surprisingly, the classical drop-
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let model fits over a wide range. Only near the
mean-field spinodal do we observe a breakdown
of this model, as can be seen by the Monte Carlo
data for q =342. Earlier comparison of the clas-
sical droplet model with Monte Carlo data' for
q = 6 did not show such a breakdown since one
could not reach deep enough into the metastable
region. However, such a breakdown was sug-
gested by an analysis of renormalization-group
flows. ' Possible alternatives to the classical
droplet model were also discussed in the same
work. For the long-range interactions studied
in this work, mean-field theory seems to de-
scribe our data better than the classical droplet
model.

To summarize, our data show that pseudospino-
dals converge rapidly to the predicted mean-field
spinodal with increasing interaction range and

we have observed for the first time a breakdown
of the classical droplet model. A more detailed
description of this work will be contained in Ref.
8.
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Photon-stimulated desorption of 0+ ions has been obtained from Na„WO3 in the range
30 eV& hv & 84 eV. The results show applicability of the Knotek-Feibelman interatomic
Auger decay model for ion desorption and show the first observation of bonding-site se-
lectivity in the process. The local coordination of the desorption site and the nature of
the bonding which contributes to ion desorption are also discussed.

PACS numbers: 68.45.Da, 68.20.+t, 79.60.Qs

Photon- and electron-stimulated desorption
(PSD and ESD) of ions from surfaces are becom-
ing important methods of studying surfaces and
interfaces. The Knotek-Feibelman' (KF) mech-
anism was proposed to explain ESD of 0' ions
from the maximally valent oxides TiO» V,O„
and WO, at the cmetal core-level excitations through
an interatomic Auger decay. For example, the
W s and d electrons in WO, are stripped away and
bound to the 0 ions. When a W core (e.g. , W 5p

level) is excited, the only way the core hole can
decay is for an 0 (valence) electron to drop into
the hole state. Emission of an Auger electron

would then leave the 0 ion in a two-hole state.
Since the equilibrium charge of the 0 ion in the
crystal is of the order O~"', 0&y & 1 (not CP ),
there is appreciable probability' that the 0 will
desorb as 0'.

In ESD, atomic excitations are accomplished
by electron bombardment, while in PSD, photons
of energy h v cause the excitation. In both spec-
troscopies, the number of desorbed ions is meas-
ured as a function of the energy of the incident
beam. Since the KF decay mechanism is indepen-
dent of the method of excitation of the core hole,
the explanation of PSD results should follow the
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