Transverse Electromagnetic Waves with Finite Energy, Action, and $\int \vec{\mathrm{E}} \cdot \vec{\mathrm{B}} \; d^4x$

Avinash Khare and Trilochan Pradhan

Institute of Physics, Sachivalaya Marg, Bhubaneswar-751005, India

(Received 15 June 1982)

Transverse electromagnetic waves possessing finite energy, action, and $\int \vec{E} \cdot \vec{B} d^4x$ are obtained in $3+1$ dimensions as a solution of the source-free Maxwell's equation in vacuum.

PACS numbers: 03.50.De, 41.10.Hv

In the last few years finite-energy solutions of classical Yang-Mills theory have attracted a great deal of attention.¹ Most of these solutions are stable, at least at the classical level, because of the existence of some conserved (non-Noether) charge. For example, the instanton and the meron solutions have nonzero pseudoscalar charge q defined by

$$
q = -\int d^4x \, \vec{\mathbf{E}}_a \cdot \vec{\mathbf{B}}_a \,. \tag{1}
$$

On the other hand, not much work seems to have been done regarding the finite-energy, stable solutions of classical electrodynamics. One of the possible reasons for this may be the notion that for transverse electromagnetic waves the electric field \vec{E} and the magnetic field \vec{B} are perpendicular to each other. However, very recently, Chu and Ohkawa² have shown that one can have a class of transverse electromagnetic waves with $\vec{E} \parallel \vec{B}$. Unfortunately the field energy for their solution diverges. Besides, not only q but even the time average of $\vec{E} \cdot \vec{B}$ is zero in the case of their solution.

The purpose of this Letter is to obtain transverse electromagnetic waves in $3+1$ dimensions possessing finite field energy, finite action, and finite q as a solution of the source-free Maxwell's equation in vacuum.

We start with the Ansatz (
$$
c = 1
$$
)
\n
$$
\vec{A}(\vec{x}, t) = \sum_{\vec{x}} \frac{C_K}{(2\pi)^{3/2}} (\vec{a} \sin \vec{K} \cdot \vec{x} + \vec{b} \cos \vec{K} \cdot \vec{x}) \cos(Kt + \alpha),
$$
\n(2)

where we have chosen

$$
\vec{\mathbf{K}} = (K/\sqrt{3})(1,1,1) \tag{3}
$$

and C_K is a momentum-space weight factor whose exact form will be specified later. Further a_i , b_i , and α are dimensionless constants. We shall work in the Coulomb gauge, i.e., $A_0 = 0$, $\nabla \cdot \vec{A} = 0$ which requires that

$$
\sum_i a_i = 0, \quad \sum_i b_i = 0. \tag{4}
$$

The electric field \vec{E} and magnetic field \vec{B} can be easily calculated and are found to be

$$
\vec{E}(\vec{x},t) = -\frac{\partial \vec{A}(\vec{x},t)}{\partial t} = \sum_{\vec{k}} \vec{E}_K(\vec{x},t) = \sum_{\vec{k}} \frac{KC_K}{(2\pi)^{3/2}} (\vec{a}\sin\vec{k}\cdot\vec{x} + \vec{b}\cos\vec{k}\cdot\vec{x})\sin(Kt + \alpha), \tag{5}
$$

$$
B_1 = (\nabla \times \vec{A})_1 = \sum_{\vec{k}} \frac{KC_K}{(2\pi)^{3/2}} \left(\frac{a_3 - a_2}{\sqrt{3}} \cos \vec{k} \cdot \vec{x} + \frac{b_2 - b_3}{\sqrt{3}} \sin \vec{k} \cdot \vec{x} \right) \cos(kt + \alpha).
$$
 (6)

$$
(B_2 \text{ and } B_3 \text{ can be similarly written down.)}
$$
 We now choose
 $\sqrt{3}b_1 = a_3 - a_2,$ (7a)

$$
\sqrt{3}a_1 = b_2 - b_3,\tag{7b}
$$

and similar cyclic relations for
$$
b_2, b_3
$$
 and a_2, a_3 , which ensure Eq. (4). With this choice Eq. (6) yields
\n
$$
\vec{B}(\vec{x}, t) = \sum_{\vec{k}} \vec{B}_K(x, t) = \sum_{\vec{k}} \frac{KC_K}{(2\pi)^{3/2}} (\vec{a} \sin \vec{k} \cdot \vec{x} + \vec{b} \cos \vec{k} \cdot \vec{x}) \cos(Kt + \alpha).
$$
\n(8)

1982 The American Physical Society 1227

 (9)

Inspection of Eqs. (5) and (8) reveals that $\vec{E} \parallel \vec{B}$ only if

$$
\vec{a}\times\vec{b}=0,
$$

which is satisfied by our choice of a and b . Note that Eq. (4) ensures

$$
\vec{\mathbf{K}} \cdot \vec{\mathbf{E}}_K(\vec{\mathbf{x}}, t) = 0, \quad \vec{\mathbf{K}} \cdot \vec{\mathbf{B}}_K(\vec{\mathbf{x}}, t) = 0.
$$
\n(10)

It is now straightforward to check that the \vec{E} and \vec{B} as given by Eqs. (5) and (8) satisfy Maxwell's equations

$$
\nabla \cdot \vec{E} = 0, \quad \nabla \times \vec{E} = -\frac{\partial \vec{B}}{\partial t}, \quad \nabla \cdot \vec{B} = 0, \quad \nabla \times \vec{B} = \frac{\partial \vec{E}}{\partial t}.
$$
\n(11)

Thus, unlike the conventional notion, we have obtained transverse electromagnetic waves in which $\vec{E} \parallel \vec{B}$. Hence for our solution, the field momentum $\vec{E} \times \vec{B}$ is zero. It is also not difficult to calculate the field energy ϵ , action S, and pseudoscalar charge q for our solution. One can show that

$$
\epsilon = \frac{1}{2} \int d^3 x \, (\vec{E}^2 + \vec{B}^2) = a^2 \int_0^\infty dK \, K^4 C_K^2,
$$
\n(12a)

$$
q = -\int d^4x \, \vec{E} \cdot \vec{B} = a^2 \sin 2\alpha \int_0^\infty dK \, K^4 C_K^2 \int_{-\infty}^\infty dt \, \cos 2Kt = \frac{1}{2}\pi a^2 \sin 2\alpha \left(K^4 C_K^2 \right) \Big|_{K^2(0)} \tag{12b}
$$

$$
s = \frac{1}{2} \int d^4x \, (\vec{E}^2 - \vec{B}^2) = -a^2 \cos 2\alpha \int_0^\infty dK \, K^4 C_K^2 \int_{-\infty}^\infty dt \, \cos 2Kt = -\frac{1}{2} \pi a^2 \cos 2\alpha \left(K^4 C_K^2 \right) \Big|_{K=0} \, . \tag{12c}
$$

In the above we have taken $a_1 = a_2 = a/\sqrt{2}$ without any loss of generality.

From Eqs. (12b) and (12c) it is clear that in order to obtain nonzero q and s one must choose C_K of the type

$$
\lim_{K \to 0} C_K = g(K)/K^2, \quad g(0) = 1,
$$
\n(13)

while in order that ϵ be finite it follows from Eq. (12a) that as $K \to \infty$, C_K must die off faster than $K^{-1/2}$. As an illustration, we choose the following C_K which satisfies both of these requirements.

$$
K^2 C_K = e^{-K\lambda},\tag{14}
$$

where λ is an arbitrary constant with dimension of length. The appearance of λ is related to the fact that Maxwell's equations are scale invariant. On using this C_K in Eqs. (12a) to (12c) we get

$$
\epsilon = a^2/2\lambda \,, \tag{15a}
$$

$$
q = \frac{1}{2}\pi a^2 \sin 2\alpha \,,\tag{15b}
$$

$$
s = -\frac{1}{2}\pi a^2 \cos 2\alpha \,.
$$

By choosing the phase α appropriately one can obtain solutions having $q > s$ or $q < s$.

One might wonder if our choice for C_K gives nonsingular $A_i(x)$. Using the C_K as given by Eq. (14) in Eq. (2) and performing k integration we find that

$$
\overrightarrow{\mathbf{A}}(\overrightarrow{\mathbf{x}},t) = \frac{\overrightarrow{\mathbf{a}}}{(2\pi)^{3/2}} \left(\frac{x(\lambda^2 + x^2 - t^2)\cos\alpha - 2\lambda x t \sin\alpha}{[\lambda^2 + (x - t)^2][\lambda^2 + (x + t)^2]} \right) + \frac{\overrightarrow{\mathbf{b}}}{(2\pi)^{3/2}} \left(\frac{\lambda(\lambda^2 + x^2 + t^2)\cos\alpha - t(\lambda^2 - x^2 + t^2)\sin\alpha}{[\lambda^2 + (x - t)^2][\lambda^2 + (x + t)^2]} \right),
$$
 (16)

where $\sqrt{3}x = (x_1 + x_2 + x_3)$. This is clearly nonsingular.

Since the solution obtained above is characterized by nonzero values of q and s and since q and s are gauge and Lorentz-invariant quantities, 3 hence the solution should be stable against decay to solutions with $q = 0$, $s = 0$. Whether quantum correction will destroy this solution or not has to be seen.

It is a pleasure to acknowledge discussions with J. Maharana and S. P. Misra.

^{&#}x27;See, for example, the exhaustive review by A. Actor, Rev. Mod. Phys. 51, 461 (1979), and reference therein. ²C. Chu and T. Ohkawa, Phys. Rev. Lett. 48 , 837 (1982).

³J. D. Jackson, *Classical Electrodynamics* (Wiley, New York, 1975), 2nd ed., Chap. 12.