Transverse Electromagnetic Waves with Finite Energy, Action, and $\int \vec{E} \cdot \vec{B} d^4x$

Avinash Khare and Trilochan Pradhan

Institute of Physics, Sachivalaya Marg, Bhubaneswar-751005, India

(Received 15 June 1982)

Transverse electromagnetic waves possessing finite energy, action, and $\int \vec{E} \cdot \vec{B} d^4x$ are obtained in 3+1 dimensions as a solution of the source-free Maxwell's equation in vacuum.

PACS numbers: 03.50.De, 41.10.Hv

In the last few years finite-energy solutions of classical Yang-Mills theory have attracted a great deal of attention.¹ Most of these solutions are stable, at least at the classical level, because of the existence of some conserved (non-Noether) charge. For example, the instanton and the meron solutions have nonzero pseudoscalar charge q defined by

$$q = -\int d^4x \, \vec{\mathbf{E}}_a \cdot \vec{\mathbf{B}}_a \,. \tag{1}$$

On the other hand, not much work seems to have been done regarding the finite-energy, stable solutions of classical electrodynamics. One of the possible reasons for this may be the notion that for transverse electromagnetic waves the electric field \vec{E} and the magnetic field \vec{B} are perpendicular to each other. However, very recently, Chu and Ohkawa² have shown that one can have a class of transverse electromagnetic waves with $\vec{E} \parallel \vec{B}$. Unfortunately the field energy for their solution diverges. Besides, not only q but even the time average of $\vec{E} \cdot \vec{B}$ is zero in the case of their solution.

The purpose of this Letter is to obtain transverse electromagnetic waves in 3+1 dimensions possessing finite field energy, finite action, and finite q as a solution of the source-free Maxwell's equation in vacuum.

We start with the *Ansatz* (c = 1)

$$\vec{\mathbf{A}}(\vec{\mathbf{x}},t) = \sum_{\vec{\mathbf{x}}} \frac{C_K}{(2\pi)^{3/2}} (\vec{\mathbf{a}} \sin \vec{\mathbf{K}} \cdot \vec{\mathbf{x}} + \vec{\mathbf{b}} \cos \vec{\mathbf{K}} \cdot \vec{\mathbf{x}}) \cos(Kt + \alpha),$$
(2)

where we have chosen

$$\vec{K} = (K/\sqrt{3})(1, 1, 1)$$
 (3)

and C_K is a momentum-space weight factor whose exact form will be specified later. Further a_i , b_i , and α are dimensionless constants. We shall work in the Coulomb gauge, i.e., $A_0 = 0$, $\nabla \cdot \vec{A} = 0$ which requires that

$$\sum_{i} a_{i} = 0, \quad \sum_{i} b_{i} = 0. \tag{4}$$

The electric field \vec{E} and magnetic field \vec{B} can be easily calculated and are found to be

$$\vec{\mathbf{E}}(\vec{\mathbf{x}},t) = -\frac{\partial \vec{\mathbf{A}}(\vec{\mathbf{x}},t)}{\partial t} = \sum_{\vec{\mathbf{k}}} \vec{\mathbf{E}}_{K}(\vec{\mathbf{x}},t) = \sum_{\vec{\mathbf{k}}} \frac{KC_{K}}{(2\pi)^{3/2}} \left(\vec{\mathbf{a}}\sin\vec{\mathbf{K}}\cdot\vec{\mathbf{x}} + \vec{\mathbf{b}}\cos\vec{\mathbf{K}}\cdot\vec{\mathbf{x}}\right) \sin(Kt + \alpha),$$
(5)

$$B_{1} = \left(\nabla \times \vec{\mathbf{A}}\right)_{1} = \sum_{\mathbf{\vec{x}}} \frac{KC_{K}}{(2\pi)^{3/2}} \left(\frac{a_{3} - a_{2}}{\sqrt{3}} \cos \vec{\mathbf{K}} \cdot \vec{\mathbf{x}} + \frac{b_{2} - b_{3}}{\sqrt{3}} \sin \vec{\mathbf{K}} \cdot \vec{\mathbf{x}}\right) \cos(Kt + \alpha).$$
(6)

 $(B_2 \text{ and } B_3 \text{ can be similarly written down.})$ We now choose

$$\sqrt{3}b_1 = a_3 - a_2,$$
 (7a)

$$\sqrt{3}a_1 = b_2 - b_3,$$
 (7b)

and similar cyclic relations for b_2 , b_3 and a_2 , a_3 , which ensure Eq. (4). With this choice Eq. (6) yields

$$\vec{\mathbf{B}}(\vec{\mathbf{x}},t) = \sum_{\vec{k}} \vec{\mathbf{B}}_{K}(x,t) = \sum_{\vec{k}} \frac{KC_{K}}{(2\pi)^{3/2}} (\vec{\mathbf{a}} \sin \vec{K} \cdot \vec{\mathbf{x}} + \vec{\mathbf{b}} \cos \vec{K} \cdot \vec{\mathbf{x}}) \cos(Kt + \alpha).$$
(8)

(9)

(10)

Inspection of Eqs. (5) and (8) reveals that $\vec{E} \parallel \vec{B}$ only if

$$\mathbf{\bar{a}} \times \mathbf{\bar{b}} = 0$$
,

which is satisfied by our choice of a and b. Note that Eq. (4) ensures

$$\vec{\mathbf{K}}\cdot\vec{\mathbf{E}}_{K}(\vec{\mathbf{x}},t)=0, \quad \vec{\mathbf{K}}\cdot\vec{\mathbf{B}}_{K}(\vec{\mathbf{x}},t)=0.$$

It is now straightforward to check that the \vec{E} and \vec{B} as given by Eqs. (5) and (8) satisfy Maxwell's equations

$$\nabla \cdot \vec{\mathbf{E}} = 0, \quad \nabla \times \vec{\mathbf{E}} = -\frac{\partial \vec{\mathbf{B}}}{\partial t}, \quad \nabla \cdot \vec{\mathbf{B}} = 0, \quad \nabla \times \vec{\mathbf{B}} = \frac{\partial \vec{\mathbf{E}}}{\partial t}.$$
 (11)

Thus, unlike the conventional notion, we have obtained transverse electromagnetic waves in which $\vec{E} \parallel \vec{B}$. Hence for our solution, the field momentum $\vec{E} \times \vec{B}$ is zero. It is also not difficult to calculate the field energy ϵ , action S, and pseudoscalar charge q for our solution. One can show that

$$\epsilon = \frac{1}{2} \int d^3x \, (\vec{\mathbf{E}}^2 + \vec{\mathbf{B}}^2) = a^2 \int_0^\infty dK \, K^4 C_K^2, \tag{12a}$$

$$q = -\int d^4x \,\vec{\mathbf{E}} \cdot \vec{\mathbf{B}} = a^2 \sin 2\alpha \, \int_0^\infty dK \, K^4 C_K^2 \int_{-\infty}^\infty dt \, \cos 2Kt = \frac{1}{2}\pi a^2 \sin 2\alpha \, (K^4 C_K^2)|_{K=0}, \tag{12b}$$

$$s = \frac{1}{2} \int d^4x \, (\vec{\mathbf{E}}^2 - \vec{\mathbf{B}}^2) = -a^2 \cos 2\alpha \, \int_0^\infty dK K^4 C_K^2 \int_{-\infty}^\infty dt \, \cos 2Kt = -\frac{1}{2} \pi a^2 \cos 2\alpha \, (K^4 C_K^2) \big|_{K=0}.$$
(12c)

In the above we have taken $a_1 = a_2 = a/\sqrt{2}$ without any loss of generality.

From Eqs. (12b) and (12c) it is clear that in order to obtain nonzero q and s one must choose C_K of the type

$$\lim_{K \to 0} C_K = g(K)/K^2, \quad g(0) = 1,$$
(13)

while in order that ϵ be finite it follows from Eq. (12a) that as $K \to \infty$, C_K must die off faster than $K^{-1/2}$. As an illustration, we choose the following C_K which satisfies both of these requirements.

$$K^2 C_K = e^{-K\lambda}, \tag{14}$$

where λ is an arbitrary constant with dimension of length. The appearance of λ is related to the fact that Maxwell's equations are scale invariant. On using this C_K in Eqs. (12a) to (12c) we get

$$\epsilon = a^2/2\lambda, \qquad (15a)$$

$$q = \frac{1}{2}\pi a^2 \sin^2 \alpha \,, \tag{15b}$$

$$s = -\frac{1}{2}\pi a^2 \cos^2 \alpha. \tag{15c}$$

By choosing the phase α appropriately one can obtain solutions having q > s or q < s.

One might wonder if our choice for C_K gives nonsingular $A_i(x)$. Using the C_K as given by Eq. (14) in Eq. (2) and performing k integration we find that

$$\vec{\mathbf{A}}(\vec{\mathbf{x}},t) = \frac{\vec{\mathbf{a}}}{(2\pi)^{3/2}} \left(\frac{x(\lambda^2 + x^2 - t^2)\cos\alpha - 2\lambda xt\sin\alpha}{[\lambda^2 + (x-t)^2][\lambda^2 + (x+t)^2]} \right) + \frac{\vec{\mathbf{b}}}{(2\pi)^{3/2}} \left(\frac{\lambda(\lambda^2 + x^2 + t^2)\cos\alpha - t(\lambda^2 - x^2 + t^2)\sin\alpha}{[\lambda^2 + (x-t)^2][\lambda^2 + (x+t)^2]} \right), \quad (16)$$

where $\sqrt{3}x = (x_1 + x_2 + x_3)$. This is clearly nonsingular.

Since the solution obtained above is characterized by nonzero values of q and s and since q and s are gauge and Lorentz-invariant quantities,³ hence the solution should be stable against decay to solutions with q = 0, s = 0. Whether quantum correction will destroy this solution or not has to be seen.

It is a pleasure to acknowledge discussions with J. Maharana and S. P. Misra.

¹See, for example, the exhaustive review by A. Actor, Rev. Mod. Phys. <u>51</u>, 461 (1979), and reference therein. ²C. Chu and T. Ohkawa, Phys. Rev. Lett. <u>48</u>, 837 (1982).

³J. D. Jackson, *Classical Electrodynamics* (Wiley, New York, 1975), 2nd ed., Chap. 12.