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Transverse Electromagnetic Waves with Finite Energy, Action, and E ~ Q d4x
4
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Transverse electromagnetic waves possessing finite energy, action, and j E ~ 8 d4x
are obtained in 3+ 1 dimensions as a solution of the source-free Maxwe1I's equation in
vacuum.
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In the last few years finite-energy solutions of classical Yang-Mills theory have attracted a great
deal of attention. ' Most of these solutions are stable, at least at the classical level, because of the ex-
istence of some conserved (non-Noether) charge. For example, the instanton and the meron solutions
have nonzero pseudoscalar charge q defined by

q = —jd'x E B, .
On the other hand, not much work seems to have been done regarding the finite-energy, stable solu-
tions of classical electrodynamics. One of the possible reasons for this may be the notion that for
transverse electromagnetic waves the electric field E and the magnetic field B are perpendicular to
each other. However, very recently, Chu and Ohkawa' have shown that one can have a class of trans-
verse electromagnetic waves with ~ ll B. Unfortunately the field energy for their solution diverges.
Besides, not only q but even the time average of E ~ B is zero in the case of their solution.

The purpose of this Letter is to obtain transverse electromagnetic waves in 3+1 dimensions possess-
ing finite field energy, finite action, and finite q as a solution of the source-free Maxwell s equation in
vacuum.

We start with the Ansatz (c = 1)

~(x, t) =Q
2 „,(asinK ~ x+ b cosK ~ x) cos(Rt+o(),

where we have chosen

K = (E/~3 (1, 1, 1)

and C~ is a momentum-space weight factor whose exact form will be specified later. Further a, , 5, ,
and nt are dimensionless constants. We shall work in the Coulomb gauge, i.e. , A, = 0, V ~ X = 0 which
requires that

P, a, -0, 5, b, =0. .

The electric field 2 and magnetic field B can be easily calculated and are found to be

@ (x, t) = — ' =g E~(x, t) =P ~, (a. sinK ~ x+bcosK ~ x) sin(Et+a),aX(x, t) - I~C,
E (2~ /

K K

tt, = (OxA), =g
g ( j cosK x+ ~ sinK x)c to+s(K). o

(B, and B, can be similarly written down. ) W'e now choose

MSb, =a, -a„
v 3a, =b, —b„

(»)
(7b)

and similar cyclic relations for b„b,and a„a„whichensure Eq. (4). With this choice Eq. (6) yields

Bgx, t)=g (t ( t)=xP „,(ssinK x+ncosK x)cos(Kt+o).
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Inspection of Eqs. (5) and (8) reveals that E II B only if

axb =0,

which is satisfied by our choice of a and b. Note that Eq. (4) ensures

K E (x, t) =0, K B (z, t) =0.

It is now straightforward to check that the E and B as given by Eqs. (5) and (8) satisfy Maxwell's equa-
tions

BB
V ~ E =0 ax E = — v ~ B=O V'x B=

at
'

Thus, unlike the conventional notion, we have obtained transverse electromagnetic waves in which
X ~I B. Hence for our solution, the field momentum Ex B is zero. It is also not difficult to calculate
the field energy r, action S, and pseudoscalar charge q for our solution. One can show that

e = —,
'

f d'x (E'+B') =a' f dKK'C„',

q = —f d x E ~ B=a sin2n f "dKK C»' f" dt cos2Kt =2ma sin2n(K C»')~»
„

s = —', f d x (E —B ) = —g cos2o f"dKK C» f "dt cos2Kt = —2ma cos2o (K C» )~»,.
In the above we have taken a, =a, = a/M without any loss of generality.

From Eqs. (12b) and (12c) it is clear that in order to obtain nonzero p and s one must choose C» of
the type

(12a)

(12b)

(12c)

lim C =g(K)/K, g(0) = 1,
K~0

while in order that e be finite it follows from Eq. (12a) that as K- ~, C» must die off faster than K " .
As an illustration, we choose the following CK which satisfies both of these requirements.

E'C =eK (14)

where p is an arbitrary constant with dimension of length. The appearance of p is related to the fact
that Maxwell's equations are scale invariant. On using this C» in Eqs. (12a) to (12c) we get

e =a'/2z,

q = zp& s&n2ot

s = —2 +el cos2cv.2

(15a)

(15b)

(15c)

By choosing the phase a appropriately one can obtain solutions having q & s or q &s.
One might wonder if our choice for C» gives nonsingular A,. (x). Using the C» as given by Eq. (14) in

Eq. (2) and performing 0 integration we find that

a x(X'+x' —t') cosn —2yxt sino b X(x'+x'+t') cosa —t(x'-x'+ t') sinn
(2v)"' [x'+ (x —t)'][a'+ (x+t)'] (2w)'" [x'+ (x -t)'][a'+ (x+t)']

where v Sx= (x, +x, +x,). This is clearly nonsingular.
Since the solution obtained above is characterized by nonzero values of q and s and since q and s are

gauge and Lorentz-invariant quantities, hence the solution should be stable against decay to solutions
with q = 0, s =0. Whether quantum correction will destroy this solution or not has to be seen.
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