Comment on "Resolution of the Einstein-Podolsky-Rosen and Bell Paradoxes"

In a recent Letter,¹ Pitowsky has given a model of electron spin in which "Every electron at each given moment has a definite spin in all directions" but which, he claims, does not imply Bell's inequality. A non-Kolmogorov probability theory in the model prevents the usual proofs of Bell's inequality from going through. I give here a very simple proof of a Bell-type inequality from the quoted statement. The inequality shows that the statement is inconsistent with quantum mechanics.

Let N pairs of electrons, each with total spin zero, emerge in opposite directions from an interaction. Let $N(A^+:C^+)$ be the number of pairs in which the left member has spin up in the A direction and the right member has spin up in the C direction. Let $N(A^+C^-)$ be the number of pairs in which the left member has spin up in the A direction and spin down in the C direction. According to the quoted statement these are meaningful

quantities. Then

$$N(A^+:C^+) = N(A^+C^-:)$$

 $= N(A^+B^-C^-:) + N(A^+B^+C^-:)$
 $\leq N(A^+B^-:) + N(B^+C^-:)$
 $= N(A^+:B^+) + N(B^+:C^+).$

Quantum mechanics predicts that if $N(A^+:C^+)$ is measured then

 $N(A^+:C^+)/N\approx \frac{1}{2}\sin^2\theta_{AC}/2,$

where θ_{AC} is the angle between A and C. According to the quoted statement $N(A^+:C^+)$ exists independently of whether it is measured or not and so the approximation holds whether it is measured or not. The above inequality is inconsistent with the approximation for $\theta_{AB} = \theta_{BC} = 60^\circ$ and θ_{AC} = 120°.

Alan Lang Macdonald

Department of Computer Science Luther College Decorah, Iowa 52101 Received 26 July 1982 PACS numbers: 03.65.Bz

¹I. Pitowsky, Phys. Rev. Lett. <u>48</u>, 1299 (1982).