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Pair Theory of the Hubbard Hamiltonian
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A pair theory of the Hubbard Hamiltonian is presented for the case of a half-filled band.
The original Hamiltonian is reformulated exactly in terms of pair operators which satisfy
boson commutation relations. The pair energies and wave functions are obtained explicit-
ly. In the one-dimensional case, these reduce to the results derived by Lieb and Wu for
M= 1. The pair Hamiltonian offers a better starting point for perturbation treatments
or variational calculations.

PACS numbers: 71.45.Qm, 03.65.Ge, 71.30.+h

There is a common bel. ief that the Hubbard mod-
el' incorporates the main physical. effects which
are due to el.ectron correl. ation. Unfortunately,
even this simplified model is not solvable by tech-
niques available today. In one dimension, how-
ever, Lieb and Wu' were able to derive the exact
solutions by generalizing Bethe's Ansatz' for the
antiferromagnetic Heisenberg chain. Though this
is an important first step towards an understand-
ing of correlation effects in solids, not very much
can be learned from this about the three-dimen-
sional case. References to previous work in this
field can be found in the review articles by Cyrot
and Ovchinnikov, Ukrainskii, and Kventsel. .

Since no obvious generalization of Bethe's
Ansatz exists for inore than one dimension, novel
techniques are required. In this work we present
a pair theory of the Hubbard Hamiltonian for the
case of a half-filled band, which leads to an exact
reformulation of the original Hami1. tonian in terms
of pair operators. These operators satisfy boson
commutation relations and the Hamiltonian takes
the familiar form of a sum of a quadratic part
representing independent-pair energies and a
quartic part representing interactions between
the pairs. Since the independent-pair energies
already contain an appreciab1. e amount of correl. a-
tion energy, one may generally expect that the
pair Hamiltonian offers a better starting point for
perturbation treatments or variational. cal.cula-
tions.

Pair theories have a l.ong tradition, ' and have
been successfully applied to the high-density
el.ectron gas and other problems in solid-state
physics. ' It is also known, however, that exact
pair theories are inevitably connected with seri-
ous mathematical difficul. ties. The origin of

U

these difficu1. ties 1.ies in the fact that pair opera-
tors do not satisfy simple Bose or Fermi com-
mutation rel. ations. In 1963, Girardeau' pre-
sented a pair theory in which the pair operators
do satisfy elementary boson commutation rela-
tions. The price one pays for this formulation is
that all eigenstates of the Hami1. tonian are re-
quired to be simul. taneous eigenstates of a certain
exchange operator, which commutes with the
Hamiltonian. It is essentially Girardeau's meth-
od that will. be used in the present work.

The one-band Hubbard Hamiltonian may be
written as

IJ =pe~ a& a&o+ N Q a~+ ~t a&la~, l a„l, (1)
aA WP~

where the energies ~~ are defined by

e, = —tQ exp(ih'R„) (t &0),

and R denotes a nearest-neighbor lattice vector.
Since H commutes with N, =Q„a„,ta„„the eigen-
values M of N~ and M' of N~ are good quantum
numbers; here, AI and M' can assume al.l integral
values between 0 and N so that M+A~'=N is ful-
filled. Moreover, as has been shown by Lieb and

Wu, ' one may restrict the range of M to 0&M
~N/2 without loss of generality. We next define
a new vacuum by

(2)

and redefine the operator a~ as

l~ h, for o = & (particles),

I c,t for o =& (holes).

It is easy to show that l4,) is an eigenvector of
both N ~ and 8 with respective eigenvalues M =0
and E,=g, e„=0.The Hubbard Hamiltonian may
now be rewritten in terms of the new operators as

(4)

and we have, in addition, that Nl =Q, b, tb, =Q,. c,tc„.
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The new fermion operators will now be used to construct particle-hole (p-h) operators. These oper-
ators are defined by

pk(q)=ck+a&k ~ p«, (q)=~k ck+«

and obey the following commutation relations:

Ip, (.q), p, (q')] = [p, '(q), p, '(q')] = o,

IP«(q)~P«' (q )]= kk' ~a' k«'bk+" bk+« —~«+a «'+a'ck' c«.

(6a)

(8b)

Now let „denote the subspace spanned by all. simultaneous eigenvectors of H and N~ for some fixed
eigenvalue M of K~. One can then readily show that the following relation holds on any subspace '4„
for 0&M &Ã/2:

&k'&k =M 'E.pk'(q)p, (q).

With the help of E(l. (7) and a similar relation for ck c» the Hamiltonian (4) can now be completely
rewritten in terms of p-h operators. One obtains

& = ZZ M ~.(q)&. , -g~I~. '(qk'(q),
kk

where

~k (q) =uk —e„,+U (0&M &N/2)

Consider now a general vector I+„)of the space 'u»

4, ,...,„(q, q )1(&,q, ). . . (& q )),
~ kg ~ .Qg

where

(8)

(8a)

ii~k ~ ~ ~ .««((ql' ' 'qN) ~k .. ««((q1' ' '.qM)&

where

K,, (k k (q, . . .q„)=(k k (q, . . .q, +0, —k,. . . .q, +0, -0, . . .q~) (1 &i &j &M).

While it is not difficult to show that any wave func-
tion satisfying E(ls. (11) obeys the exclusion prin- The preceding results enable us to express II„
cipl.e, it is by no means obvious that the same of Eq. (8) in terms of "ideal-boson" operators
conditions just suffice to remove the redundancy B„(q)and B„(q).These operators are defined to

of the product states t'10). For a proof of this as- satisfy the usual boson commutation relations
sertion, the reader is again referred to Ref. 8. such as [Bk(q),B,.t(q')]=5«« 5„., together with

Hence, any given vector of 'u~ can be uniquel. y B(k)qual, ) =0, where I4', ) is the ideal-boson vacu-

represented by an expansion such as (9), pro- um. Once these operators have been defined, it
vided the wave function p satisfies the conditions is possible to construct an ideal state space 'u~.

(11). Given any vector I+~) of 'u~, we define its unique

image I4'«() in 'u~ by

I+,)= Z Z ~, , ..., (q, . . .q~)B, , '(q, ). . .B« '(q )I+.),
k y ~ kg &goo.~g

(11a)

(12)

1(&,q, ) (Igq, ))=p, , '(q, ) .p, , '(q, )l~-.&. (10)

The above-mentioned mathematical difficulties now arise since, for M ~ 2, the set of all. product states
(10) is overcomplete. This implies that a given vector I+„)of n„(M-2) cannot be expanded in a
unique way into the set of product states (10). The physical reason for the linear dependency between
the pair product states rests upon the fact that there is no unique assignment of particles (or hales) to
the p-h pairs, i.e., there is the possibility of exchange of particles (or holes) between different pairs.
Girardeau' solved the overcompleteness problem by imposing subsidiary conditions on the space of
wave functions g so that the l, atter all represent states having the correct symmetry under exchange of
fermions between different pairs, and thus satisfy the Pauli principle. The subsidiary conditions im-
posed by Girardeau are
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with the same wave function ( as in (9), which has been made unique by imposition of the subsidiary
conditions (11). The ideal space e„is then defined to be the set of all such states!4'„)as!4„}runs
over all. of 'u„. The conditions (ll) can be more conveniently reformulated in terms of an eigenvalue
problem in „. Consider the following exchange operator:

If = 'Z-ZB.„'(q)B,'(q')B, (q k)B„,(q'-k).
kk

(13)

One can show" that imposition of the subsidiary conditions (ll) is completely equivalent to the follow-
ing eigenvalue equation:

K!4'„)= —2M(M —1)!4„). (14)

In order to express H„ofEq. (8) in terms of ideal-boson operators, one has to find the image of H„in
A convenient way to do this is described in Refs. 8 and 9. In this manner, one ends up with the

Hamiltonian

H = g W» ~ (q)B,t(q)B„~(q) —— Q Q B„,„~t(q)B, »t(q')B, i (q' —k)B, ~ (q+k),k ~ 0+k (15)

where

W~ ~
i (q) =(u„(q)6„~~ —U/N.

Since H is defined on %t„and any vector of that space has to satisfy Eq. (14), H and k possess common
eigenvectors. This is only possible if these operators commute,

[H,k] = 0.

(15a)

(16)

B~(q)=Zpq ap(q)Ap(q),

where the p»(q) are required to satisfy the eigenvalue equation

One readily verifies that Eq. (16) is fulfilled.
The final step consists in diagonalizing the first term of (15) by means of a unitary transformation of

the operators. Let A and A. ~ be new boson operators related to the 8 and 8 ~ operators by

P„.w„.(q)q ...(q) =z, (q)q „(q).
Equation (15) is then transformed into the pair Hamiltonian

(18)

H=QE~(q)A~ t(q)A~(q) ——Q Q V~ ~ (kqq')A~ t(q)A~ t(q')A~ (q' —k)A~ (q+k),
Pa

where the first term represents the independent-pair energies, while the second term describes in-
teractions bebveen the pairs. Note that, because of the commutation rules, the interaction term of
(19) vanishes identically on the subspace 'Il~ » evidently this result holds for any number of dimen-
sions. The matrix elements are given by

~,, & (kqq') = E q„...*(q)q, ",*(q')q', ",,(q' —kk, , (q+k). (19a.)

The exchange operator can be transformed simi-
larly by inserting (17) into (13). Equations (19),
(16), and (14) constitute the central results of this
work.

For the applicability of the pair Hamiltonian
(.19), it is important that the energies E~ (q) and

wave functions p»(q) can all, be given explicitly.
I now show that this is indeed the case: Thus,
from Eq. (18), we find that the energies are given
as the zeros of the function

! Further, the wave functions are obtained as

q»(q) =(U/N)[~, (q) -&&(q)} 'N, (q), (21)

where N~(q) =Q„p»(q) is a normalization factor.
The latter can be written more explicitly by mak-
ing use of the orthonormality of the q&» (q) and

Eq. (20). This leads to

!N~ (q}!'= (N/U(U+i &E, (q)/&t F~ (q)), (21a-)

~S,q) = I+(U/N) Z,(E -~. (q)) '. (20)
where t is defined by Eq. (1a). A closer examina-
tion of Eq. (20) reveals that the zeros of D(E,q)
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fall into two categories: There is one isolated
zero, E(q), which lies below the quasicontinuum
of p-h states &u, (q) and is determined by

Q, Jdk/[~, (q) E-]= 1, Q, =UV, /(2~)'. (22)

Here, V, is the volume of the unit cell, d is the
number of dimensions, and the integral extends
over the whole Brillouin zone. All other zeros
of (20) fall inside the limits of the band and can
be obtained by contour integration. ' One finds

ln Eqs. (23), b.~(q) is the spacing of two succes-
sive poles v„(q)at wave vectorp, and P denotes
the principal value integral. Equations (21)-(23)
are the desired expressions for the pair wave
functions and energies. It can be seen from Eqs.
(22) and (23) that for U»t (atomic limit), the en-
ergies E (q) (homopolar states') are separated
from the E~ (q) (ionic states') by a gap of -U.

In one dimension, where e„=—2t cos(ka) (a is
the lattice constant), Eqs. (22) and (23) reduce to

Ep(q)=&p(q) ——~p(q)tan '
D
', (23)

m D, ~ q
E (q) = U -(U'+ (4t sin&qa)']' ' (24)

where

X(E,q) =wQ„J dk 5[E —~„(q)},
D (E,q)=1+Q PJ dkJLE —&u (q)) '.

(23a)
E~ (q) = U —2t f cos(2~ a) —cos(2~ +q)a],

where

(25)

2, 2
Z~ =P + — tan ' —[sin(p + q)a —sin(pa)]

Na Na

In (25a), the upper or lower sign applies accord-
ing to whether the argument of the arctangent is
positive or negative, respectively. Equation
(25a) is correct up to, and including, terms of
the order I/N. It can be showng that the energies
given by (24) and (25) are identical to those de-
rived by Lieb and Wu' for M = 1. Although the
details are too lengthy to present here, essential-
ly this result follows because, as previously
mentioned, the interaction term of (19) yields no
contribution in this case. A more detailed ac-
count of the present work will be published else-
where. '

(25a)
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Coherent transient effects in Mossbauer spectroscopy due to phase modulation of re-
coilless y radiation are considered both theoretically and experimentally. Absolute cal-
ibration of the source motion in the angstrom range and separation of the source and ab-
sorber contributions tothe experimental linewidth were obtained from a single transient
Mbssbauer spectrum. A new phase-modulation method for generating short enhanced re-
coilless y pulses is introduced.

PACS numbers: 76.80.+ y

In a recent Letter' anomalous line shapes were
reported in Mossbauer experiments with sinusoi-
dal phase modulation at frequencies close to the
linewidth of the Mossbauer state. Decaying inter-

ference oscillations appear in such transient
Mossbauer (TM) spectra. Here, a general formu-
la is derived for the time dependence of Moss-
bauer transmission due to phase modulation of y
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