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Spectrum of the Schrodinger Equation on a Self-Similar Structure
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The spectrum of the Schrodinger equation, with magnetic field, on a model self-similar
structure is considered. Nesting properties are formulated. Low-field behavior of the
spectrum edge (of interest for superconductive diamagnetism) is discussed. Comparison
between self-similar structures and regular lattices is emphasized.
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Consider the triangular structure, built accord-
ing to the construction depicted in Fig. 1. At
stage 0, it is an equilateral triangle made of
wires. Iteration from stage n to n+1 implies the
juxtaposition of three stage-n structures. This
is a simple self-similar structure, a so-called
Sierpinski gasket, the fractal dimensionality'
of which is 2=1n3/In2, and it has been contem-
plated as a model for a percolation backbone. ' '
We are interested in solving the Schrodinger
equation (with suitable boundary conditions at the
nodes) on such a, network and in finding its spec-
trum (Landau levels) in the presence of a mag-
netic field. Since this is equivalent to solving the
linearized Ginzburg-Landau equation, several
diamagnetic superconducting properties of such
a network are governed by the highest eigenvalue. '

One question is: How does the spectrum of a
self-similar structure differ from the spectrum
of a regular lattice structure?

The Schrodinger equation in the presence of a
magnetic field is traditionally written as

[zv+(2v/C, )Aj' y=Zg, (I)

where A is the vector potential associated with a
magnetic field H, normal to the plane of the gas-
ket, and 4, is the flux quantum. Projection of the
vectors along the wire directions is meant. ' The
boundary conditions at the nodes, for the wave
function p and its gradients, are the natural gen-
eralizations of Kirchhoff relations, ensuring cur-
rent conservation. "

A few preliminary words about notational choice

are in order. In the context of superconductivity,
the eigenvalue F. on the right-hand side of Eq. (I)
represents $ ', where $ is the superconducting
coherence length. ' In the context of Landau lev-
els, in a tight-binding formulation, the useful
quantity is the (dimensionless) energy e defined
by

E =I '(are cos&/4)', (2)

4)i

where I is the elementary length (edge length of
the stage-0 triangle). The spectrum of e is then
confined to the interval [-4,+4], for the gasket
as well as for the square lattice. ' For ease of
comparison, and also because symmetry proper-
ties (which will become apparent below) make it
preferable, we choose to discuss the spectrum
in terms of the variable e.

At stage 0, the spectrum is trivially obtained as

4z' —3z = cos(2~4/C, ), (3)

where e =4m and 4 is the magnetic flux through
the elementary triangle [4' =(M3/4)I 'H]. In Fig.
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FIQ. 1. Three first stages of the construction of an
infinite triangular Sierpinski gasket. The linear size
is increased by a factor of 2 at each iteration, while
the total wire length increases by a factor of 3.

FIG. 2. Spectrum at state 0. The eigenvalues e are
plotted as functions of the ratio g&/4 0, where 4 is the
magnetic flux and C 0 the flux quantum. Note the sym-
metries of the spectrum (discussed in text) and in par-
ticular the symmetry with respect to the point O.
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FIG. 3. Spectrum at stage 1. Point/ is a triple

point (crossing of three curves). Points q„q» and

Q3 are double points. The vertical arrows on the hori-
zontal axis correspond to abscissas 4 /4'0 ~8& 8 ~ 8' The2 3

corresponding eigenvalues are marked with crosses.
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FIG. 4. Spectrum at stage 2. Point P is a point of
degeneracy 6. Points Q „Q» and Q~ are triple points.
The vertical arrows and the crossed points are the
same as in Fig. 3.

2, energy e is plotted versus 4/4„showing a
well-known set of curves, exhibiting manifestly
the flux periodicity imposed by the gauge invari-
ance of Eq. (1).

At stage 1, the spectrum can still be obtained
analytically. In Fig. 3, we have plotted only a
part of the spectrum: 0 - e -4, 0 - 4/4, - —;.

The reason is that the spectrum has a symmetry
point 0 (42/4), = 4, e = 0), as visible in Fig. 2. The
whole spectrum can be reconstituted by using the
flux periodicity e(O/42, +0) = e(42/4), ), 0 integer,
the symmetry of the spectrum around 4/42, =-,',
and the inversion symmetry around Q. Accord-
ingly, we may restrict our attention to the inter-
val 0 (42/40 ( ~, 0 (e ~4.

Then it is observed that the lowest curve of the
spectrum which was one arc at stage 0 is made
of two arcs, joining at point Q„at stage 1. Be-
sides, one notices that point P (4'/4', = —,', e = 0),
which was a double point at stage 0, becomes a
triple point at stage l.

At stage 2, the spectrum can still be obtained
without too much effort and it is shown in Fig„4.
As can be seen, point I' becomes the crossing
point of six energy levels, whereas point Q, be-

@,
(t3+I ) 3 @(n) @,(n) (6a)

4,( + )n+ 422(n+2) 3(42{n) + 42(n)) + 2(4n) @

where a„, b„, 0„, and &„are defined by

(6b)

comes the crossing point of three branches. The
lowest curve (highest eigenvalue) is now made of
six arcs, with four new crossing points (besides
q,).

In order to calculate the spectrum beyond stage
3, it is useful to derive recursion relations. Such
relations are obtained, ' by scaling down the prob-
lem of order m to that of order n =0, via a simple
renormalization of parameters. Define 4 (" ) (re-
spectively, 4(")) as the renormalized flux through
a corner (respectively, central) triangle, and de-
note by z„ the renormalized value of z. The re-
cursion equations, for which full credit should

go to Alexander' who derived them first, are re-
produced here in order to make this presentation
self -contained:

(4a)

(4b)

K„=64 z „'—l 2 z „—2 cos(27(42(")/4, ),
a„=16@„'—1+4@„cos(2))4"/4, ) +cos[2)T(4'" +4 " )/4'„j,

2&@(n) 2&(24, (n) + 4, (n))
b„= i b„~exp(-i9„) =16m„—1+4'„2exp -i +exp -i

0 0

. 2m2'"' 22{2'")+O'"'))~
+ exp -2& + 2 exp -i ——=

40 40

( la)

(7b)

(7c)
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This set of nonlinear recursion equations can be
viewed as a map (z„, 4 " ) —(z„„,C ""), because
4 "~ can be eliminated via the following conserva-
tion equation:

4(n) +4(n) 2(4n)4

which is a consequence of Eq. (6b).
A finite gasket, at stage n, can then be renor-

malized to a single triangle, by repeated use of
the above equations. In particular, the eigenvalue
equation of the gasket, at stage n, is

4z „'—Sz „=cos(2v 4(")/4,),
which is the generalization of Eq. (3).

We are now in a position to discuss various
properties of the spectrum.

(I) Miscellaneous properties. It is—possible to
prove rigorously the symmetry properties of the
spectrum, which were mentioned above and which
allow attention to be restricted to the interval 0
~e ~4, 0 ~4/4, ~-,'. The inversion symmetry

around point 0 is related to the triangular (frus-
trating) nature of the elementary cells. (For the
square lattice, there is a symmetry between posi-
tive and negative e.) Note that 0 belongs to the
spectrum, for neven.

To the highest eigenvalue in zero field, a=4,
4/40=0, there corresponds an eigenfunction
which is uniformly extended over the gasket. A

uniformly extended eigenfunction is also obtained
for e = -4, 4/4, = —,', as a consequence of the sym-
metry around Q. The lowest eigenvalue in zero
field, c = -2, 4/4, = 0, is highly degenerate (like
point P) as a result of the frustration effect.

(ii) Nesting properties Properti. —es similar to
the previous ones (i) can be found on regular lat-
tice structures (e.g. , triangular lattice' ). We
consider now properties which are intimately re-
lated to the self-similar nature of the gasket.

Nesting property I: If, for some value of the
field, an eigenvalue is degenerate, at stage n,
it will remain part of the spectrum, at all higher
stages, with increasing degeneracy.

Consider, for instance, point P: a=+2, 4/4,
At stage 0, it belongs to the spectrum (Fig.

2) with degeneracy 2 (crossing point of two branch-
es); at stage 1, with degeneracy 3; at stage 2,
with degeneracy 6. It can be shown' that its de-
generacy is z(1+3" ') at stage n. As a second
example, consider point Q, (Fig. 3), which is
doubly degenerate at stage 1. At the next stage
(Fig. 4), its degeneracy is 3.

This property is related to the Z, symmetry of
the gasket geometry. The increase of the degen-
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4z„„'—Sz„„=cos(2)) 4("+')/C, ) (10)

which implies that this point is also part of the
spectrum at stage n+1.

Nesting properties I and II, taken together,
suggest to what extend the spectrum at any stage
is constrained by the spectrum of the previous
stage. Comparison of the conspicuous nesting
properties of translation-invariant lattices"
and of dilatation-invariant structures appears
as a physically attractive goal, of important
potential signif icance. "

As a final remark, we give further considera-
tion to the behavior of the spectrum edge (highest
eigenvalue) in low field. The neighborhood of the
point e = 4, 4/4, = 0, which is a fixed point of the
recursion equations, has been studied previous-
ly, ' in some detail, and the following result
established:

c -4 —
~99 [1+10(~~5)"j(274/4, )'.

This implies that, for large size I. =2"3,

DE=4 —6 B 1 (12)

cracy at other crossing points seems to follow
the same pattern as for point P. Though we have
no formal proof yet for nesting property I, in its
generality, we have accumulated empirical evi-
dence, from observation of the first stages, and
found no counterexample.

Nesting property II: The eigenvalues which, at
stage n, correspond to equally spaced field val-
ues given by C/C, =k/2(4"), where k is an integer
running from 0 to 4", will remain part of the
spectrum at all higher stages, for the same field
values. Moreover, the tangents, at these points,
to the eigenvalue curves keep the same slope, at
higher stages.

Consider, for example, the spectrum at stage
1, which is drawn in Fig. 3. The abscissas 4/4,
=-,',~8,& have been marked with a vertical arrow
and the corresponding values are marked with a
cross. These crossed points are still part of the
spectrum at stage 2, as visible in Fig. 4.

We have been able to prove nesting property II.
Our proof is based on straightforward, but cum-
bersome, algebra, using the recursion equations
(4) -(6). For instance, the first statement de-
rives from the following proposition: If, for a
given stage n, the point [4/4, =k/2(4"), q] be
longs to the spectrum, i.e.,

4z„' —Sz„=cos(2v4 ")/C,),
then it follows that
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Ae -8 (i 5)

which is found on regular lattices"'" (see par-
ticularly Fig. 1 of Ref. 7). Thus the anomalous
exponent 5, which is related to dilatation invar-
iance, vanishes trivially for a regular lattice.
However, it is presumably nonzero for a percolat-
ing cluster at threshold. '" As a consequence,
many physical properties around a percolation
threshold, including diamagnetic super conducting
properties, can be treated along the lines of the
preceding scaling analysis.

This is another justification for studying gasket
structures which, at first sight, may look some-
what artificial. Though the precise value of expo-

with 5=1n5/ln2 -2. This same exponent 5 gov-
erns the behavior of the conductivity' and of the
diffusion" on the gasket, in zero field. Such
finite-size effects are due to the sensitivity of
eigenfunctions to boundaries and they occur for

small enough. A crossover is expected to
take place around

b&-I. '

toward an asymptotic (L independent) behavior,
which is derivable from Eqs. (12) and (1S) as

a~ -a«4-') (1

In fact, the edge of the spectrum is a curve
which is the nonanalytic limit of a proliferating
number of arcs (extrapolate from Figs. 2-4).
The power law (14) describes its asymptotic low-
field behavior. This is to be compared with the
standard linear regime

'nent 5 on the Sierpinski gasket is probably not
pertinent for percolation, many qualitative as-
pects of the spectrum, with its nesting and seal-
ing properties, bid fair to have physical rele-
vance.
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