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Nonlinear Reflection in Cholesteric Liquid Crystals: Mirrorless Optical Bistability
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Exact elliptic-function solutions are presented for intense light waves in cholesteric
liquid crystals. Light-induced changes in the pitch of the cholesteric helix lead to a bi-
stable reflection characteristic even in the absence of external reflectors.

PACS numbers: 61.30.6d, 42.65.-k

The linear propagation of light in cholesteric
liquid crystals has been studied extensively by
several authors. ' The remarkable rotatory pow-
er, circular dichroism, and iridescence dis-
played by these liquid crystals have been ex-
plained on the basis of a spiral arrangement of
anisotropic molecular layers which produces
selective Bragg scattering of circularly polar:-
ized light of the appropriate helicity and wave-
length. In all these theories it has been tacitly
assumed that the properties of the cholesteric
helix do not change under the action of light
waves. Recently, however, an extremely large
orientational optical nonlinearity has been pre-
dicted in the mesophase of nematic liquid crys-
tals, ' and effects such as self-focusing, degen-
erate four-wave mixing, optical field-induced
birefringence, and the Freedericksz transition'
have been observed in nematics with cw laser in-
tensities of less than 200 W/cm'. Since choles-
terics are locally indistinguishable from nemat-
ics, one would expect a similarly large orienta-
tional nonlinearity in the former. Furthermore,
the large-scale helical ordering of cholesterics
should give rise to nonlinear optical phenomena
unique to that mesophase.

In this Letter I consider light-induced distor-
tions of the cholesteric helix for waves in the

Bragg regime. One novel result is that the re-
flection coefficient of a cholesteric film is a
multivalued function of the input intensity. This
leads to an intrinsic, mirrorless optical bistabil-
ity in contrast to the classic bistability of non-
linear Fabry-Perot interferometers. 4 The physi-

cal principle is similar to the bistability pre-
dicted for distributed-feedback structures' and

in the degenerate four-wave mixing process. '
DeGennes' and Meyer' have shown that static

electric and magnetic fields can distort the
cholesteric helix and increase its pitch. An ex-
tension to high-frequency traveling waves has
been suggested by Dmitriev. ' However, he as-
sumed a rather special form for the pitch dila-
tion, and his linearized theory (linear in inten-

sity) applies only to infinite cholesteric media
and for waves far from the Bragg condition. In

the present work no assumption is made concern-
ing the form of the static distortion. Instead we

solve the coupled nonlinear Euler-Lagrange and

Maxwell equations in a self -consistent manner
which yields the steady-state configuration of the
cholesteric helix. The reaction of the distorted
helix on the light field emerges in a natural way

from this calculation which is exact within the

slowly -varying-envelope appr oximation.
We consider a cholesteric slab of length L

whose helix axis is oriented along S. The aver-
age orientation of the elongated liquid-crystal
molecules is described by the director n(z) whose

components are

n„= cos&(z), e, = sin0(z) I,,= 0.
The director rotates about the z axis, and in the

absence of external perturbations the angle 0 is
given by O=q~, where q, is the unperturbed wave

number of the helix whose pitch is p =2m/q, .
Under the action of intense light waves the choles-
teric director assumes a new configuration which

may be found by minimizing the total free energy"

F= 2 J d r(K»(V n'R+»(n. ,V. XR+q )'+R0»(n&&V&n) -E D/4w).

Here Kyy %22 and +33 are the Frank elastic constants that describe the basic distortions of splay,
twist, and bend, respectively. The electric displacement is related to the electric field E through

D = c~E + e, n(n ~ E)

(2)

(3)

where 6 =~,
~

cj e
~t

and c~ being the dielectric constants parallel and perpendicular to the local di-
rector.

The helical structure of the cholesteric liquid crystal suggests the use of circularly polarized basis
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fields; hence we take the electric vector as

E = Rel[E (z)(z +iy)/W2+E, (z)(x —iy)/v 2 ]e
where E,=(E„+iE„)/~&. For transverse electromagnetic waves propagating along the z axis, 'only the
twist term (proportional to K») contributes to the distortion free energy and thus minimization of the
free energy leads to the Euler-Lagrange equation

[Re(E+ *)sin29 —Im(E, E *)cos29].
8 E

dz' 8rK» (5)

The field amplitudes are functions of z and must be found from the Maxwell equations which, by use of
(3) and (4), ean be written"

—d'E /dz'=k 'E +k 'E e'"
where k, ' = ((u/c)'( e ii

+ cJ/2 and k, ' = (cu/c) 'e, /2.
In the linear theory, circularly polarized light whose wavelength lies in the Bragg regime of the cho-

lesteric structure is almost totally reflected if its helicity matches that of the liquid crystal. The re-
flected light is also circularly polarized with the same sense as the incident light, and with a wave
vector close to that of the cholesteric structure. (In contrast, ordinary mirrors reverse the helicity
of an incident wave. ) Thus we may take the field within the medium as a sum of counterpropagating
right circularly polarized waves of the form E, = iS, (z) iexp[iy, (z)+iq, z J. Then in the slowly-varying-
envelope approximation Eqs. (6) become

d
I &+ I /dz = & I &- [ s in@,

d/h f/dz=Ki8 /sin'0,

d+/dz =2(q. +~)+~(l& I/I&+I+ I&+I/I&-l)cos+ —2d0/dz ~

(7a)

(7b)

(7c)
Here 4 = y+ —y +2q~ —26t, K =k, '/2q„and M
=(k,' —q, ')/2q, . Without loss of generality I
choose boundary conditions such that the director
is constrained at the input [ 8(0) = 0] and free at
the exit (d8/«ii=q, ). For the field I assume
zero-reflection boundary conditions so that
ih (L) i

=0. (Discrete dielectric reflections may
be included trivially but these do not introduce
any new physics. ) The simultaneous solution of
Eqs. (5) and (7) yields the self-consistent electric
field and director distributions.

Three integrations of the set are used to obtain

du/dz = 2a[q(u) ] '~',

where

(8)

Q(u) = (u —J)[u —(u —J)(kk/K —J+u) ] i

with u =
& I &+ I', ~= r I &r I', the nor malized trans-

mitted intensity, and y= e, /32vR»z'. The solu-
tion of Eq. (8) is the distribution of the forward
flux,

a single equation for the forward flux in the cho-
lesteric:

u(z) =u, +
1 - (u, - u, ) (u, - u, )

' sn'[2K(z —L) /g, k J
'

where u, &u, &u, &u, are the roots of Q(u), and sn is a Jacobi elliptic function with g =2/[(u, -u, )(u,
-u, )]"'and k = [(u, -u, )(u, -u, )]"'g/2. A final integration then yields the director distribution

(10)

0(z) =q~ +2K(t u)z -g(u, —u—)[II(j(z), a', k) —II(y(0), a', k)],

where II is an elliptic integral of the third kind,
with n'=(u, -u, )/(u, -u, ), and y(z) =sin '[sn(~(z
-L)g)].

The main results of the theory are contained in
Eqs. (10) and (11). For a given value of the trans-
mitted intensity 4, evaluation of u at z =0 yields
the incident intensity I. The relation between

i transmitted (or reflected) intensity and incident
intensity is shown in Fig. l. This relation is
multivalued and thus the reflected (and trans-
mitted) intensity will exhibit hysteresis and dis-
continuous jumps as the incident intensity is
varied. As is the case with static electric and
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cho-line order. e rTh esulting distortion of the
les eric e 't helix and the increase in its perio

sitmeans tha a igt a li ht wave which at low intensi y
he structure' f' the Bragg condition for the struc ure

not suffer Bragg reflections at higher in
si ies. Thus a transition from high refreflection to
h' h transmission occurs as t e inci1g

is increased beyond a criticaal value. In thesl is iiicl'e
li ht field extendsh h-transmission state, the lig ieig

throughout the length of the medium aand is able
ain the director distribution in the per-

turbed condition until the intensity is re uc
a level consi era y'd bl lower than the critical

This explains the hysteresisswitch-on intensity. is
observed in Fig. 1.

~ ~ ~The y componen o et f the cholesteric director is
2 for zero field (dotted) and for anshown in Fig. or zer

less than thef' ld of intensity somewhat less aninput ie o i
sit inside theritical value. Because the intensi y incritica v ue.

li ht-induced pitchh lix is inhomogeneous, the lig -in u

dilation is spatially nonuniform. n pIn articular,
h

i
8

i
= 0 there is no changenear the exit where

inpi c .t h The maximum pitch dilation occurs
e '

he fieldnear the fron o et f the cholesteric where the
is enhance roud th ugh Bragg reflections. n ap-

't hate expression for this max'imum pl c
b hdilation, o it', t first order in intensity,

from (11) to be

5g) 5q (u
'- e„'ll;„l'&'

P q c 6477K~2q o'qo
(12a,)

where is eth amplitude of the incident right

FIG. 1. Transmitted (solid line& an) and reflected (dashed
ensit for gL = 2 and gk1 ) tensities vs incident intensi y

For yL & 2, a discontinuous ~ump fromm the lower
o e when I= 1. Intensities areto the upper branch occurs when

normalized by 32m K21K /E', .

FIG, 2. The y component of the director for zero
an incident intensity of Ifield (das.hed line) and for an i

The transmitted intensity is J=0.=1.14 (full line . e
b'1't curve ofn the lower branch of the bista i i y cuwhich is on t e ower

ium is IFig. 1. The norma izeh alized length of the medium i Q'p

= 10m.

ld. This result holds forcircularly polarized fie
kthin cholesteric films such tha t gI-» 1. For thic

samples i L &2) the resulting pitch dilation is
independent of the length of the medium and is
given by

(12b)

i Sh i

' = 4v((u/c)'(e, /e)K22,

for circular y po1 olarized waves which satisfy the
Forcondition for the cholesteric helix. or

q13& is indistinguishable from the exact
value obtained from (10). Using typica

6q = -q, i
S-

i
'/4~K„(u)/c)'.

This lack of dependence on the diedielectric anisot-
and sample length can be understoodropy e, an

The orientation-through the following reasoning: e
al forces responsisible for pitch dilation are pro-

ortional to e, w ii,L)' hile the orienting field de-p
ithin a characteristic lengthcays exponentially wi in a

thI. proportional to 1/e, . Thus for xl &2, eC

"the extra length of mediumfield does not "see e
beyond I.,

illTo estimate t e cri ith 'tical intensity for bistab
h1 that the jump in transmissionission occurs w en

the light wavelength no longer ies w

f the distorted helix. The width of
th' eflection band is Q. '= e, /c, where e =

~/2 and A.
' is a reduced wavelengt g'+E an i

ve. Thus at the threshold for bis a itabili theA. p e. usa
lative light-induced change in pe in itch is of the

order of the bandwidth, or q q, —
means of (12b) this leads to a. critical intensity
of
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e, /e = 0.1, K» = 10 ' dyn, and an incident wave-
length of 1 p,m, we find a critical intensity for
bistable reflection on the order of 1 MW/cm'.

The connection between bistable reflection in
cholesteric liquid crystals and the problem of
nonlinear distributed-feedback structures' al-
luded to in the introduction can now be formally
established. In Ref. 5, intense light changes the
refractive index of a grating whose period re-
mains fixed. For the cholesteric, the effect of
the strong field is to alter its period. Either ef-
fect may be described in terms of a variable
phase function C(z) in a periodic perturbation of
the form cos[Qz+4(z)], or equivalently as a
chirp in the spatial frequency given by 5Q =dC'/
dz. Under the assumption that the frequency
chirp is proportional to the local intensity, 5Q
= —y~ 8 ~', it is easy to show that the Maxwell
equations for the cholesteric reduce to precisely
the same equations that describe nonlinear prop-
agation in distributed-feedback structures. Of
course, the quantitative results of this heuristic
argument differ from the exact treatment pre-
sented here since the response of the director
to applied fields is not simply proportional to the
local intensity. The correct form of the nonlinear
interaction must be obtained by solving the coup-
led Euler-Lagrange and Maxwell equations as
done here.

In conclusion, we have solved the problem of
nonlinear propagation in cholesteric liquid crys-

tais and discovered an intrinsic optical bistabil-
ity in these remarkable materials. This bistabil-
ity is a, result of light-induced pitch dilation, and
occurs even in the absence of external reflectors.
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