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Nonlinear Reflection in Cholesteric Liquid Crystals: Mirrorless Optical Bistability
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Exact elliptic-function solutions are presented for intense light waves in cholesteric
liquid crystals. Light-induced changes in the pitch of the cholesteric helix lead to a bi-
stable reflection characteristic even in the absence of external reflectors.
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The linear propagation of light in cholesteric
liquid crystals has been studied extensively by
several authors.' The remarkable rotatory pow-
er, circular dichroism, and iridescence dis-
played by these liquid crystals have been ex-
plained on the basis of a spiral arrangement of
anisotropic molecular layers which produces
selective Bragg scattering of circularly polar-
ized light of the appropriate helicity and wave-
length. In all these theories it has been tacitly
assumed that the properties of the cholesteric
helix do not change under the action of light
waves. Recently, however, an extremely large
orientational optical nonlinearity has been pre-
dicted in the mesophase of nematic liquid crys-
tals,” and effects such as self-focusing, degen-
erate four-wave mixing, optical field-induced
birefringence, and the Fréedericksz transition®
have been observed in nematics with cw laser in-
tensities of less than 200 W/cm?. Since choles-
terics are locally indistinguishable from nemat-
ics, one would expect a similarly large orienta-
tional nonlinearity in the former. Furthermore,
the large-scale helical ordering of cholesterics
should give rise to nonlinear optical phenomena
unique to that mesophase.

In this Letter I consider light-induced distor-
tions of the cholesteric helix for waves in the
Bragg regime. One novel result is that the re-
flection coefficient of a cholesteric film is a
multivalued function of the input intensity. This
leads to an intrinsic, mirrorless optical bistabil-
ity in contrast to the classic bistability of non-
linear Fabry-Perot interferometers.?” The physi—|

cal principle is similar to the bistability pre-
dicted for distributed-feedback structures® and
in the degenerate four-wave mixing process.®

DeGennes” and Meyer® have shown that static
electric and magnetic fields can distort the
cholesteric helix and increase its pitch. An ex-
tension to high-frequency traveling waves has
been suggested by Dmitriev.® However, he as-
sumed a rather special form for the pitch dila-
tion, and his linearized theory (linear in inten-
sity) applies only to infinite cholesteric media
and for waves far from the Bragg condition. In
the present work no assumption is made concern-
ing the form of the static distortion. Instead we
solve the coupled nonlinear Euler-Lagrange and
Maxwell equations in a self-consistent manner
which yields the steady-state configuration of the
cholesteric helix. The reaction of the distorted
helix on the light field emerges in a natural way
from this calculation which is exact within the
slowly -varying-envelope approximation.

We consider a cholesteric slab of length L
whose helix axis is oriented along 2. The aver-
age orientation of the elongated liquid-crystal
molecules is described by the director #(z) whose
components are

n, =cost(z), n,=siné(z), n,=0. (1)

The director rotates about the z axis, and in the
absence of external perturbations the angle 6 is
given by 0=¢g,2, where g, is the unperturbed wave
number of the helix whose pitch is p =27/q,,.

Under the action of intense light waves the choles-
teric director assumes a new configuration which
may be found by minimizing the total free energy™®

F=1 ) d*v{K, (v -2)?+ Ky « VX1 +qo)% + Kyg(it X V X72)? -E.-D/an}. (2)

Here K,,, K,,, and K,, are the Frank elastic constants that describe the basic distortions of splay,
twist, and bend, respectively. The electric displacement is related to the electric field E through

5=elﬁ+eaﬁ(ﬁ SHN

(3)

where €,=€,-€,, €, and €, being the dielectric coustants parallel and perpendicular to the local di-

rector.

The helical structure of the cholesteric liquid crystal suggests the use of circularly polarized basis
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fields; hence we take the electric vector as

E=Re{[E_(2)(% +i9)/V2Z+E (2)(% —19)/VZ Je~ 1wt}

(4)

where E*=(ExiiEy)/\/.2_. For transverse electromagnetic waves propagating along the z axis, only the
twist term (proportional to K,,) contributes to the distortion free energy and thus minimization of the

free energy leads to the Euler-Lagrange equation
d®9 €

dz? 81K,,

—4%— [Re(E ,E_*)sin26 — Im(E , E_*)cos26].

(5)

The field amplitudes are functions of z and must be found from the Maxwell equations which, by use of

(3) and (4), can be written®
-d?’E,/dz? =k E, +k*E,e*?°,
where k% =(w/c)?(€, +€,)/2 and k2 =(w/c)%¢, /2.

(6)

In the linear theory, circularly polarized light whose wavelength lies in the Bragg regime of the cho-
lesteric structure is almost totally reflected if its helicity matches that of the liquid crystal.’ The re-
flected light is also circularly polarized with the same sense as the incident light, and with a wave
vector close to that of the cholesteric structure. (In contrast, ordinary mirrors reverse the helicity
of an incident wave.) Thus we may take the field within the medium as a sum of counterpropagating
right circularly polarized waves of the form E,=|&,(z)|explig,(z) igyz]. Then in the slowly-varying-

envelope approximation Egs. (6) become
dl8,|/dz =«k|8.|sin¥,
d|8_|/dz=«k|8,|sin¥,

av/dz =2(q,+ ak) +k(|8_| /|8, ]+ 8,1 /18-])cos¥ - 2d0/dz.

Here ¥=¢, - ¢_+2q2z - 20, k=k,2/2q,, and Ak
=(ko> = q,%)/2q,. Without loss of generality I
choose boundary conditions such that the director
is constrained at the input [ 6(0) =0] and free at
the exit (d6/dz|, =q,). For the field I assume
zero-reflection boundary conditions so that
|6-(L)|=0. (Discrete dielectric reflections may
be included trivially but these do not introduce
any new physics.) The simultaneous solution of
Eqgs. (5) and (7) yields the self-consistent electric
field and director distributions.

Three integrations of the set are used to obtain |

Uy — Uy

(7a)
('Tb)
(7¢)

u(z) =u, +

1= (uy = u) (e, —u;) "' sn®[2x(z = L) /g, k]’

a single equation for the forward flux in the cho-
lesteric:

du/dz =2k[Q(u) ]2, (8)
where
Qu) =(u =) u=-(u=-J)Aak/k - J+u)?], (9)

with u=y[8,[2, J=y|&,[?, the normalized trans-

mitted intensity, and y=¢,/327K,,k% The solu-
tion of Eq. (8) is the distribution of the forward

flux,

(10)

where u, >u,>u;>u, are the roots of @ ), and sn is a Jacobi elliptic function with g =2/[(«, —Ug)
—u )Y and b=, —u,)u, —u,)]?g/2. A final integration then yields the director distribution

6(z) = qoz +2k(J — ug)z = glu, —u)[ (¢ (2), a®, k) - T(¢(0), o2, k)],

where II is an elliptic integral of the third kind,
with a?=(u, = u,)/(u;, —u,), and ¢(z)=sin"[sn(«(z
-Dg)].

The main results of the theory are contained in
Egs. (10) and (11). For a given value of the trans-
mitted intensity J, evaluation of # at z =0 yields
the incident intensity 1. The relation between
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(11)

' transmitted (or reflected) intensity and incident
intensity is shown in Fig. 1. This relation is
multivalued and thus the reflected (and trans-
mitted) intensity will exhibit hysteresis and dis-
continuous jumps as the incident intensity is
varied. As is the case with static electric and
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FIG. 1, Transmitted (solid line) and reflected (dashed
line) intensities vs incident intensity for «Z =2 and Ak
=0. For kL >2, a discontinuous jump from the lower
to the upper branch occurs when I~1, Intensities are
normalized by 327K 5ok?/¢, .

magnetic fields, the time-averaged optical field
couples to the local dielectric anisotropy to exert
torques within the cholesteric which oppose the
elastic torques responsible for its liquid-crystal-
line order. The resulting distortion of the cho-
lesteric helix and the increase in its period
means that a light wave which at low intensity
satisfies the Bragg condition for the structure
may not suffer Bragg reflections at higher inten-
sities. Thus a transition from high reflection to
high transmission occurs as the incident inten-
sity is increased beyond a critical value. In the
high-transmission state, the light field extends
throughout the length of the medium and is able
to maintain the director distribution in the per-
turbed condition until the intensity is reduced to
a level considerably lower than the critical
switch-on intensity. This explains the hysteresis
observed in Fig. 1.

The y component of the cholesteric director is
shown in Fig. 2 for zero field (dotted) and for an
input field of intensity somewhat less than the
critical value. Because the intensity inside the
helix is inhomogeneous, the light-induced pitch
dilation is spatially nonuniform. In particular,
near the exit where |8.|=0, there is no change
in pitch. The maximum pitch dilation occurs
near the front of the cholesteric where the field
is enhanced through Bragg reflections. An ap-
proximate expression for this maximum pitch
dilation, to first order in intensity, can be shown
from (11) to be

Gi):__é_czz<g>2 €218, 1%°
p 90 c) 64nKyaq," 7

where &, is the amplitude of the incident right

(12a)
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FIG. 2. The y component of the director for zero
field (dashed line) and for an incident intensity of I
=1,14 (full line). The transmitted intensity is J =0,12
which is on the lower branch of the bistability curve of
Fig. 1. The normalized length of the medium is gL
=107.

circularly polarized field. This result holds for
thin cholesteric films such that kL =1, For thick
samples (kL >2) the resulting pitch dilation is
independent of the length of the medium and is
given by

0q = —q,| 8l 2/41K 5w /c)?. (12b)

This lack of dependence on the dielectric anisot-
ropy €, and sample length can be understood
through the following reasoning: The orientation-
al forces responsible for pitch dilation are pro-
portional to (€,L)? while the orienting field de-
cays exponentially within a characteristic length
L, proportional to 1/€,. Thus, for kL >2, the
field does not “see” the extra length of medium
beyond L.

To estimate the critical intensity for bistability,
recall that the jump in transmission occurs when
the light wavelength no longer lies within the
stop band of the distorted helix. The width of
this reflection band is 6x’=¢€,/€, where €=(¢
+€,)/2 and A’ is a reduced wavelength given by
A/pVe. Thus at the threshold for bistability, the
relative light-induced change in pitch is of the
order of the bandwidth, or |6g/q,| ~€,/e. By
means of (12b) this leads to a critical intensity
of

[ & 2 =4m(w/c)(e,/€)K,,, (13)

for circularly polarized waves which satisfy the
Bragg condition for the cholesteric helix. For
thick samples the intensity predicted by the ex-
pression (13) is indistinguishable from the exact
value obtained from (10). Using typical values of
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€,/€=0.1, K,,=107® dyn, and an incident wave-
length of 1 um, we find a critical intensity for
bistable reflection on the order of 1 MW/ cm?

The connection between bistable reflection in
cholesteric liquid crystals and the problem of
nonlinear distributed-feedback structures® al-
luded to in the introduction can now be formally
established. In Ref. 5, intense light changes the
refractive index of a grating whose period re-
mains fixed. For the cholesteric, the effect of
the strong field is to alter its period. Either ef-
fect may be described in terms of a variable
phase function ®(z) in a periodic perturbation of
the form cos[@z +@(z)], or equivalently as a
chirp in the spatial frequency given by 6Q =d®/
dz. Under the assumption that the frequency
chirp is proportional to the local intensity, 6@
=—y|E|? it is easy to show that the Maxwell
equations for the cholesteric reduce to precisely
the same equations that describe nonlinear prop-
agation in distributed-feedback structures. Of
course, the quantitative results of this heuristic
argument differ from the exact treatment pre-
sented here since the response of the director
to applied fields is not simply proportional to the
local intensity. The correct form of the nonlinear
interaction must be obtained by solving the coup-
led Euler-Lagrange and Maxwell equations as
done here.

In conclusion, we have solved the problem of
nonlinear propagation in cholesteric liquid crys-
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tals and discovered an intrinsic optical bistabil -

ity in these remarkable materials. This bistabil -
ity is a result of light-induced pitch dilation, and
occurs even in the absence of external reflectors.
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