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The spectrum of density perturbations is calculated in the new-inflationary-universe
scenario. The main source is the quantum fluctuations of the Higgs field, which lead to
fluctuations in the time at which the false vacuum energy is released. The value of bp/p
on any given length scale l, at the time when the Hubble radius » l, is estimated. This
quantity is nearly scale invariant (as desired), but is unfortunately about 10' times too
large.
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The inflationary-universe scenario was pro-
posed by one of us' as a possible solution to the
horizon, flatness, and monopole problems. In
this scenario the universe supercools by many
orders of magnitude below the critical tempera-
ture of a grand unified theory (GUT) phase transi-
tion, and in the process it exponentially expands
by an enormous factor. The original version re-
quired that eventually the bubbles of the new

phase would coalesce to fill the space uniformly.
It was pointed out in the original paper, however,
that under plausible assumptions this require-
ment is not fulfilled. Further studies" have
shown that there is no apparent way to achieve a
smooth coalescence of bubbles in the aftermath
of inflation.

The hopes for the inflationary universe bright-
ened considerably when Linde and Albrecht and
Steinhardt' proposed an alternative ending which
avoids the problems described above. In this

new inflationary universe, " the entire observed
universe emerges from a single bubble or fluctua-
tion. While a generic potential would lead to bub-
bles with far too little entropy to comprise the ob-
served universe, ' these authors showed that with

a Coleman-Weinberg potential' it is very plausible
that a single bubble or fluctuation can undergo
enough inflation to avoid this problem. The uni-
verse expands exponentially as the Higgs field p
slowly

' rolls" down the potential, and the energy
is then rapidly thermalized when p begins to os-
cillate about its minimum.

In this paper we will examine the consequences
of the quantum fluctuations of the scalar field p
which occur during the era of exponential expan-
sion. We will follow the evolution of these fluctua-
tions through the time at which galactic scales
come within the Hubble radius (at about 10' sec),
and we will estimate the energy density fluctua-
tions Dpi'p at that time. According to Harrison
and Zeldovich' this number should be about 10 ',
and roughly independent of scale. We find that the
new inflationary universe leads to a 5p/p which is
roughly independent of scale, but with a magni-
tude of = 50. Thus, it appears that a further mod-
ification of this scenario is necessary in order to
make it workable.

For concreteness we will deal with an SU(5)
GUT, ' with an adjoint Higgs field &'= (+)' 'P diag[1,
1,1,—~, —&]. The Coleman-Weinberg potential
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ds'—= g„,dx" dx'=-dt '+R'(t) dx',

where R(t) =e"' and y = t~v(0)/3]'" = 10"GeV
(where ~ =-8zt G). The scalar field p then obeys
the equation

j +3yy =s V/9 y +e 'x' a, 'y, (3)

where the dot denotes differentiation with respect
to t, 8&

=—&/&x, and i is summed from 1 to 3.
(We are ignoring fluctuations in the other compo-
nents of C'.) We now write p(x, t) =p, (t)+ &p(x, t),
where p, (t) is a homogeneous solution to Eq. (3).

It will be useful to have an approximate expres-
sion for p, (t). For p of order y, we ean approxi-
mate V(p) by

V(q) = V(0) —&Xy',

where we find r using the running coupling con-
stant" of unbroken SU(5)1 that A. = ~. By neglect-
ing the p, term in the differential equation, one
finds

y, '(t) = —3y/2xt, (5)

where we have chosen the time at which p, - to
be t =0. p, then varies approximately from 0.17'
to 1.7g as Xt varies from —100 to —1, and then
&p, grows rapidly. Equation (3) is aeeurately
satisfied when —Xt » 1.

The quantity &p obeys the equation

The last term on the right-hand side decays as
e ' ', and will soon become negligible. The quan-
tity ~p then obeys the same equation as p„and
the presence of the damping term implies that
any two solutions approach a time-independent
ratio at large times. " Thus, at large times one
can write

5@(x,t) - —~~(x)i,(t),
and then to first order in &7,

9 (x, t)- p,(t —»(x)). (8)

then takes the form'

V(p) = ~&'~V" »(@'/o') + p(&' —V') ~

(We are using the flat-space potential, but we ex-
pect that gravitational corrections" would not
significantly change our results. ) We assume that
the region which will evolve into the observed
universe cools into a false vacuum (p = 0), and it
is then soon described accurately as a de Sitter
space, with a Robertson-Walker k =0 metric

Thus, the effect of the fluctuations is simply to
produce a position-dependent time delay in the
evolution of p, (t).

We will return later to estimate the magnitude
of the fluctuation 5z (x). We will first assume
that 5z is given, and we will calculate 5p/p. To
simplify the analysis, we will make two approxi-
mations: (i) The space-time metric will be taken
as exactly de Sitter until t =&z (x); the fluctuations
in T&, will be considered to be negligible com-
pared with the false vacuum energy density.
(ii) The transition from false vacuum (with pres-
sure p = —p) to radiation (p = ~p) will be assumed
to take place instantaneously at t =57(x). In a
subsequent paper we will show by means of a
more complicated analysis that the error result-
ing from these approximations is totally negligi-
ble.

To understand the transition from false vacuum
to radiation, we will define a new coordinate sys-
tem by t'= t —&z (x-), x'=—x. In this coordinate sys-
tem the transition occurs at t' =0, but the pertur-
bations are recorded in the metric

~X ~X
gpV g tp g IV gag~

The energy-momentum tensor for t'& 0 is taken
to be that of an ideal radiation fluid:

T""=pg""+ (p +p)u "u",

where p =~p and u denotes the local fluid veloci-
ty, with u'=- —1. The values of p and u" at t' =+ c
are completely determined by D „T"'=0, where
D, denotes the covariant derivative. Note that
u~ is undefined for t'&0, but we can define it to
be continuous at t' =0. Then

D „T,' = [6p +u p (b p +b p))5(t') +. ..,
D,r, '=u, u'(t p+ ~p)5(t )+. . .,

where 6p =p(t' =+ &) -p(t'=- &), &p is defined
similarly, and only the 5(t') terms have been
written out. In the spirit of our first-order per-
turbation analysis, we assume that the t' =0 hyper-
surface is spacelike; it follows that u'g0. The
vanishing of Eqs. (11) then implies &p =0, u, =0;
i.e., u" must be orthogonal to the t' =0 hypersur-
face. We take u'& 0.

To follow the evolution of the density-wave
perturbations for t'&0, we will use the formalism
of Olson. " To use the formalism, we must com-
pute the initial (i.e., t' =0) values of 9 =—5" D „u ~

and divX=D„(zz DBp), where 7z" =g +u"u js
the operator which projects onto the space orthog-
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(divX)' = — „divX+ „,9 S.7 3

8~gt
"4

{12)

If the functions &T(x) and S{z) are Fourier expand-
ed as f(x) = fd'k exp(ik. x)f$), then Eqs. (12) can
b+ solved by introducing a dimensionless time
variable x =—(2k't "/3y)' ' and eliminating divX to
obtain

2d2$ dSx', —2x —+ (2 +x')S =0,
dX dX

which has solutions x sim and x cosx.
The initial conditions are fixed at x, =kg /~3,

and at this time S =~k'X '&7 and xdS/dx =2S. To
relate x, to current length scales, note that R (t)
was normalized to unity immediately after the
phase transition, when the temperature T -10"
GeV. Taking R1' -const, one finds R- 10" today.
Identifying k' ' with a coordinate distance ~, one
has ky '=Rg '/l„hz„where l~„z, is the current
length and Rx ' - 10 m- 10 " light-yr. Thus, for
a galactic scale of, say, 10' light-yrp xp 10 ".
The desired solution is then

S =2g5Tx sinx[1+ O(x,') l. (14)

Finally, we determine ~p by using the formula"
(t"5p/p)' =S, which can be integrated to give

5p x slKc + cosx —1—=4$~T —cosx + 2
P X'

Thus, &P/p grows as x' for x «1, but for large x
(when the wavelength of the perturbation becomes
small compared with the Hubble radius) it begins
to oscillate with a root-mean-square value

5p, ,/p =2v 2y5T.

We now return to the question of estimating the
magnitude of the fluctuations in 67 (x). Given any
stochastic function f(x) with correlation functions
which are invariant under translations and rota-
tions, one can measure the mean fluctuations of

onal to u". A straightforward calculation (to
first order in &v') yields & =I'~&' =Sy + &&'&r, and
divX=O. The quantity S is then defined by 3~p
=9'(1+S); so S{t'=0)=- 'y '8, '5T.

For t'&0 we introduce another time variable
t" =—t' +~ y '; the unperturbed metric then has the
form of Eq. (2), with R(t") =(2&t")"' and p
=3/4Kt "2. (Note that at t" =~y ', R =1 and R =y,
as required by continuity. ) The evolution of the
perturbations is then governed by the equations""

S =(t ) S+ yKt divX~

wave number k by"

&f(R) = ({2~) 'k' fd'x exp(t% ~ x)(f(x)f(0)))"'. (17)

To estimate &T $) consider again Eq. (6). I et
t*(k) denote the time at which the two terms on
the right-hand side are equal in magnitude. Using
Eqs. (4) and (5), one finds

—yt*= ln(yk ') —~ ln(- ~yt*)

= ln(yk '),
(18)

where we are interested in values of yk ' of or-
der 10". For t«t* the potential term is negligi-
ble, and the two-point correlation function for
~p is determined by the quantum theory of a free
massless scalar field in de Sitter space":

~~% t) =((X /16")li (X- k)"- "'~)" {19)

On the other hand, the time lag 5T(x) is deter-
mined by Eq. (7) for t »t*. Thus, we will esti-
mate &T by assuming that Eqs. (19) and (7) are
both reasonable approximations at t*. Then

&v'{k, t *) -' x/(16~')"' (2o)

i,(t *)= (3/«)"'X'/»'"(Xk ')

In Eq. (20) we made use of the fact that

(y 'k)'exp(-2xt*) = 9/[2 ln{yk ')]«1
for the cases of interest. It then follows that

&p/p =2~2yb &= (4&/3&')' ln ~2(yk ').

(21)

(22)

For a galactic scale of 10' light-yr, Eq. (22)
gives Ap/p = 49. On a scale of 10" light-yr we
find &p/p = 64. Thus the spectrum of fluctuations
is sufficiently flat —it is just the magnitude which
is wrong.

While this discrepancy is of course disappoint-
ing, one should remember that this is the first
model with sufficient detail to allow an estimate
from first principles of the magnitude of 5p/p.
(Calculations based on cosmic strings" require
the assumption of an initial space which is perfect-
ly homogeneous. ) The estimate is somewhat mod-
el dependent, and it is conceivable that the de-
sired number can be obtained by modifying the
scenario and/or the underlying particle theory.
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Vote added. —After this calculation was com-
pleted we learned that Starobinsky" had already
obtained similar conclusions. Hawking" and. Bar-
deen, Steinhardt, and Turner" have announced
results which are also in agreement. We have
also received a preprint by Pagels" which ob-
tains a much smaller answer; however, we be-
lieve that the effects which he considers are sub-
dominant.
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