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by is the Foldy term due to the interaction of the
neutron with the electrostatic potential of a bound
electronic charge, Z is the atomic number, b,
is the neutron-electron scattering length, and
f(sin8/2)) is the electronic form factor. For
forward scattering f=1. Using the value bp
=-1,468x1073 fm calculated by Foldy!* and the
value b,, =(-1.38+0,02) X107 fm measured by
Koester, Nistler, and Waschkowski,'® one ob-
tains a nonnuclear term b,=8.28 X107% fm whose
value is greater than the experimental error on
the measured b value. Then the nuclear force
scattering length for uranium is given by 0,
=(8.409+0,0062) x10™*® c¢m,

In conclusion, the very accurate determination
of the neutron coherent scattering length of nat-
ural uranium makes it possible to obtain an ac-
curate determination of the neutron coherent
scattering length of the isotope 2**U, We intend
to continue these fundamental constant measure-
ments in the actinide series, in particular for
235U and #*2Th (for which contradictory results
exist).

We are grateful to T. Wroblewski for valuable
assistance during the experiment and to A, Paul
for the preparation of the sample.
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Monte Carlo Study of the Isotropic-Nematic Transition in a Fluid of Thin Hard Disks
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The first numerical determination of the thermodynamic isotropic-nematic transition
in a simple three-dimensional model fluid, viz., a system of infinitely thin hard platelets,
is reported. Thermodynamic properties were studied with use of the constant-pressure
Monte Carlo method; Widom’s particle-insertion method was used to measure the chemi-

cal potential.

The phase diagram is found to differ considerably from predictions of a

second-virial (“Onsager”) theory. Virial coefficients up to the fifth were computed; &

is found to be negative.

PACS numbers: 64.70.Ew, 05.20.-y, 61.30.Cz

Beginning with the work of Onsager® a great
variety of theoretical models have been proposed
that aim to link the thermodynamic properties of
liquid-crystal-forming fluids to the intermolecu-
lar interactions of the constituent molecules.? In
assessing the relative merits of these models,
direct comparison with experiments on real liquid
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crystals has often been less than conclusive be-
cause disagreement between theory and experi-
ment could be blamed on the use of unrealistic
models for the intermolecular interactions,
rather than on fundamental deficiencies of the
theoretical approach used. For lack of exact re-
sults there is clearly a great need for numerical
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data on simple model systems. Surprisingly
enough, though some simulations on the isotropic-
nematic transition have been reported,® these
have been limited to lattice models. Such models
leave out an essential characteristic of liquid
crystals (viz., the fact that it is a Jiquid). A fluid
of hard spherocylinders was studied by Veillard-
Baron ,“ but the isotropic-nematic (I -N) transition
was not located.

In this Letter we report, what is to our knowl-
edge, the first determination of the thermody-
namic I -N transition in a simple three-dimen-
sional model fluid. The model that we have chos-
en to study is a fluid of infinitely thin, hard
platelets of diameter o (see Fig. 1). There are
several reasons for studying this particular sys-
tem: First of all, it is guaranieed to have a
nematic phase at high densities. As the platelets
have zero volume, this system cannot crystallize.
In contrast, in model systems with a finite den-
sity of closest packing one must first make sure
whether a thermodynamically stable nematic
phase can exist at all. Secondly, the hard-
platelet fluid is a “one-parameter” system; there
is only one independent thermodynamic variable,
viz., the density p*=po3. In this respect the
hard-platelet system is similar to the hard-
sphere fluid, and one may hope that the hard-
platelet fluid could serve as a reference system
for a whole class of nematogens, viz., those that
consist of disklike molecules. Finally, and per-
haps most importantly, results on the hard-
platelet system provide a direct test of the On-
sager model."! To be more precise, the Onsager
model aims to describe the I -N transition in a

FIG. 1. A typical configuration of a system of 400
hard platelets at a density p = 4.8. This configuration
has nematic order.
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system of thin hard rods; it neglects contribu-
tions to the free energy that involve virial coef-
ficients higher than the second. In the limit that
the length-to-width ratio of the rods goes to in-
finity, higher virial coefficients are indeed neg-
ligible. The special feature of the hard-platelet
system is that if one neglects virial coefficients
higher than the second, it is isomorphous with a
system consisting of infinitely thin rods.® But in
the hard-platelet fluid higher virial coefficients
are nonnegligible (see Table I). Consequently, a
study of the latter system enables us to assess to
what extent the presence of higher virial coef-
ficients affects the validity of the Onsager pre-
dictions. In view of what follows, it is useful to
briefly summarize these predictions: At low
densities (i.e., below the I -N transition) the equa-
tion of state is of the form

P =p*+p*3p, (1)

(for disks, b,=72%/16). In Eq. (1), and in what
follows, we use reduced units: kT =1 and 0=1.
A phase transition is predicted at P =22.89, p,
=5.334, and p, =6.846. Here we have used the
values that Kayser and Raveché obtained by nu-
merically solving the Onsager model.® The or-
der parameter in the nematic phase is defined as

N
s=N'121P2(Ei ‘1), 2)
iz
where ﬁ,. is the unit vector describing the orienta-
tion of molecule ¢, and n is the nematic director.
At the I -N transition the value of S is predicted
to jump discontinuously from 0 to 0.784. Note
that the Onsager theory predicts a very strong
first-order transition (Ap*/p*=26%).

From a computational point of view the constant-
pressure Monte Carlo (MC) method” is best suit-
ed to study the equilibrium properties of the hard-
platelet system. The chemical potential of the
hard-platelet fluid was measured divectly, em-
ploying Widom’s relation between the excess
chemical potential, .y, and the probability,

P,.., that a platelet, added at random to the sys-
tem, will be accepted®: [ =-ETIn{P,..). In
this particular system the probability of accept-
ance is such that, even at the highest densities
studied, the estimated error in u., was less than
2%. In fact, we devised several methods to im-
prove the statistics on u,.,; these will be de-
scribed in a future publication.® As a check on
the reliability of the MC data we computed the
virial coefficients of the hard-platelet fluid up to
b,, using the diagram techniques developed by
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Ree and Hoover.!® The results are shown in
Table I. Note that b, is negative. We know of no
other example of a three-dimensional, purely
repulsive hard-core system that has a negative
virial coefficient as early as b,. We find that at
low pressures (P <5), the MC results are, to
within the computational error, indistinguishable
from the predictions of a five-term virial series.
We performed constant-pressure MC simulations
on a system consisting of 100 hard platelets at
pressures in the range 1<P <25; in all cases
periodic boundary conditions were employed. Ad-
ditional simulations with N =50 and N =400 were
carried out to test for systematic system size
dependences, especially around the phase trans-
ition. Initially, the system was prepared in a
configuration with all platelets oriented parallel;
the centers of mass were distributed randomly
over the box. Subsequent runs were started from
previously equilibrated lower or higher density
configurations. In every case at least 10* passes
(=10° moves for N =100) were reserved for equili-
bration (considerably more close to the I -N
transition). Equilibrium averages were accumu-
lated in runs lasting between 2x10* and 10° pass-
es.

The dependence of p* and i on P is shown in
Fig. 2. For the sake of comparison the five-term
virial series is also shown. Note that at higher
pressures the virial series predicts a lower den-
sity than was observed in the MC simulations;
this implies that at least some of the higher
virial coefficients must also be negative. Around
P =14.25 we observe a small discontinuity in the
density (p*=3.78—~p*=4.,07 for N=400). The
width of the density gap is strongly system-size
dependent: It is largest for N =400 and is com-
pletely absent for N=50. We wish to emphasize
that, even for the largest systems studied, we
never observed any systematic dependence of the
measured equilibirum properties on the density

TABLE 1. Virial coefficients b, (n = 2—5) for hard
platelets, expressed in units 0*"" D (column I) and in
units 5,""! (column II).

bn
n I II

%/16 1
0.1692+1x 1074 0.4442+ 4% 1074
0.00480+1x 1074 0.0205+ 5% 1074
—0.00867+3x10"4 —0.060+1x1078

oo W N

of the initial configuration (i.e., no hysteresis).
On the basis of Landau’s symmetry arguments
(see, e.g., Ref. b) one would expect a first-order
isotropic-nematic transition in three dimensions.
The MC results are certainly compatible with a
weak first-order transition but on the basis of
the simulation results alone we cannot rule out
other possibilities. At P =14.25 the chemical
potential of the high- and low-density phases is
equal to within experimental accuracy. The pre-
cise location of the phase transition was deter-
mined in the following way: Polynomial fits were
made to the high- and low-density branches of
the equation of state. We then computed p at high
densities by integrating 8 /8P =1/p* along the
isotherm, keeping P,., (the transition pressure)
as an adjustable parameter. The value of P;_,
quoted above is the one that yielded the best
agreement between p obtained by integration and
L. obtained directly by use of the particle-inser-
tion method. Even so the uncertainty in the trans-
ition pressure is still + 3%. Note that the dis-
continuity in slope of 1 vs P is barely visible in
Fig. 2. The order parameter S, defined as the

o
— ]

) o
- ]
AT ]

© Jo
x 1

o~ ya Je~
/ ]

© ' Jo

0 50 s Tan s
PRESSURE

FIG. 2. Pressure dependence of the average density
p (crosses) and the chemical potential u (triangles),
as obtained from constant-pressure MC simulations.
To improve the legibility of the figure only a fraction
of the measured points has been included. Dashed
lines: polynomial fits to p and p. Solid lines: five-
term virial series expressions for p and p. All quan-
tities are in reduced units.
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FIG. 3. Density dependence of the nematic order
parameter S, for different system sizes: N =100
(points), N =400 (triangles), N= 800 (crosses). The
drawn line is the best single-power—law fit to the MC
data (exponent g ~ 0.25). Points at densities below the
estimated density of the nematic phase at coexistence
were not included in the fit.

largest eigenvalue of the matrix

N
QaﬂzN-lzl (wiaui b - GaB)/z’

i=
was studied as a function of density. Near the I -
N transition a very strong system size dependence
of S was observed (see Fig. 3). We attempted to
fit the density dependence of S just above the I -N
transition by a power law of the form S=A (p*
-—po*)ﬂ. Strictly speaking, there is no reason to
expect a power-law dependence of the order pa-
rameter close to a first-order transition. How-
ever, in real liquid crystals of rodlike molecules
the density dependence of the order parameter
agrees quite well with a mean-field description,
which implies that close to the transition 8=3.
This behavior was not observed in the present
simulation; in fact, it was found that 8 =3 gave
a rather poor fit. The best fit was obtained with
B=0.25. We do not consider this as evidence for
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nonclassical behavior of the exponent 8; more
likely it signifies that the range of densities over
which S follows a simple power law is rather
narrower than the range over which we tried to
fit it. Atpy* we find a value S~ 0.37+0.1.

In summary, we find that the real phase dia-
gram of the hard-platelet fluid differs dramatical-
ly from the phase diagram that one would predict
if all'virial coefficients higher than the second
vanish. We observe an /-N transition at P = 14.25
with p; *=3.78 and py*=4.07 (compared with P
=23.01, p, *=5.35, py*=6.75 for the Onsager
theory). In contrast to the Onsager model the
phase transition in the hard-platelet system is
quite weak: The jump in density is 7% (cf. 26%)
and the jump in the order parameter is 0.37 (cf.
0.784). At high densities we find that P ~ 3p*, in
agreement with the Onsager prediction. It is,
however, easy to show that this result is inde-
pendent of the details of the model; any model
that treats the geometrical constraints on the
molecular orientations in a dense hard-platelet
nematic correctly should lead to this prediction.
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