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An ortbogonalization process is proposed, applicable to spaces which are realizations
of abstract Hilbert space. It is simpler than the Gram-Schmidt process. A recurrence
relation which orthogonalizes a physical space is proposed and it is shown that the gen-
eralized Langevin equation is contained therein. This process serves as a basis for
understanding the nature of the dynamic many-body formalism.

PACS numbers: 03.65.Fd, 02.30.+g

In quantum mechanics one encounters degenera-
cies, e.g. , accidental degeneracy. In such a situ-
ation one uses the Gram-Schmidt (GS) orthogonal-
ization process' to construct a set of orthogonal-
ized wave functions. ' The GS process is general.
It is applicable to any complete set of a finite or
infinite number of linearly independent functions
or operators definable in a Hilbert space. By
this process one can construct a sequence of
orthogonal basis vectors spanning a Hilbert space
or its linear manifolds. This idea is also formal-
ly used. The theories of Mori' and Zwanzig, ' for
example, are built by the Mori-Zwanzig projec-
tion-operator technique, which is a formal ver-
sion of the GS process.

If the dimensionality of a Hilbert space is large,
the GS process is computationally impractical.
Dynamic theories based on the GS process are in-
evitably very complex formally if relevant Hilbert
spaces are infinite dimensional. Such are some
of the disadvantages of the GS process due to its
generality. For most physical problems, one
works in some given Hilbert spaces, so that the
generality is not really needed. Thus, by using
the GS process in these situations, one is bearing
the unnecessary burdens. Also one is not taking
advantage of properties which specific Hilbert
spaces can possibly provide.

I propose here an orthogonalization process by
recurrence relations (RR's) for functions and

operators. RR's are properties of given Hilbert
spaces. Hence this alternative process is not
generally applicable. The sacrifice in generality,
however, permits a direct and practical way of
orthogonalization for a particular Hilbert space.
In addition, RR's can be physically meaningful
precisely because they represent realizations of
an abstract Hilbert space. As an application, we
show that the generalized Langevin equation of
Mori is contained in HH's.

I. GS orthogonalization process. —Given a finite
or infinite set of independent vectors g=(g„g„

h, =g„- Q (g„,h„)h„, v ~2, (Ib)

where h, =h, j(h„h,). We note that uhatever is
the definition of the inner product (X, Y), h is
orthogonal, i.e. , (h„, h „)= 0 if v w p.. Hence, the
GS process is completely general and applies to
any Hilbert space S.'

il. Recurrence relation in dynamic space Con.—
sider a complete set 8=(Af ~, A '~, Ai'i, . .. ,
Ai', . .. j in Hilbert space 5, where AI"~ =(iL)'A,
v ~0, and LA=[A, A], where H is the Hamilton-
ian and A is a Hermitian operator. ' We define
the inner product of X and Y in 8 as

(X, Y) =P-'J e.&X(~)Y')-&X)&Y'), (2)

where p is the inverse temperature p=(~BT) '
the dagger denotes Hermitian conjugation, X(X)
=e "Xe ", and (XY) is an ensemble average
defined by (Xl') = Tr(e "XY)/Tr e ". For
simplicity we shall take &X)= (Yt)=0.' The in-
ner product implies that for any Hermitian vector
X&8, [(iL)'X, (iL) X]=0 if )v —V) is an odd num-
ber for any v, p. -0. It follows from (2) that 8
is not an orthogonal set. The aim is to construct
an orthogonal set f =(fo, f„f„.. . ,f„, . .. j in
Hilbert space h from the nonorthogonal set 8.
This is equivalent to finding a set of basis vec-
tors spanning S~, the Hilbert space of A. , defined
by (2).

I construct f, inductively by explicitly using (2).
With the initial choice f, =A, we have f, =iLf,
from (2).' Next I construct f, by writing f, =iLf,
+x, where x is to be determined by the orthogo-
nality (f„f,) = (f„f,) = 0. The first condition

. . . , g„, . . . ] in Hilbert space 8, one can define an
inner product (X, Y), whereX, YcS. If (g„g„)
g 0 for v c p, then g is not an orthogonal set. One
can construct an orthogonal set h = (h„h„.. .h„
. . . ) in 5 from g by the GS formula'

(la)
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gives -(f„f,)+(x,f,) =0. Since (f„f,) g0, xg0
and (x, f,) g0. The second condition gives (x,f,)
= 0 hence x= cf„where c is a constant. " It can
be determined from the first orthogona'ity condi-
tion, i.e. , c = (f„f,)/( f„f,) =- 6,. Thus, f, =i Lf,
+ &,fo. With fo, f„and f2 now given, I let f, =iLf,
+y, where y is to be determined by the orthogo-
nality, i.e., (y, f,) =0, -(f„f,) +(y, f,) =0, and

(y, f,) =0; Hence it follows that y =df„where d

(f„f,)/(f„f,) =—6 and f, =iLf, +b.,f,.
We shall now obtain a RR for f„,assuming that

ff„f„.. . ,f,j are known. Let f„,=iLf„+x„v
-0, where x„ is to be determined. The orthogo-
nality (f„„f„)= 0 for all ~ ( v gives —(f„,f„)+(x„
f, ,) =0 a,nd (x„f,) =0 if ~-v but ~gv —1. Evi-
dently, x,= 6,f, „v ) 1 and x, = 0, where the
constant 6, can be determined from &, =(f„f„)/
(f„„f, ,). Hence, finally we obtain

f„„=iLf,+A,f, „v)0,
with f, =—0 and b,, =—1.

Through the above RR (3), a complete orthogo-
nal set f can be generated from the nonorthogonal
set 8. That is, the RR represents an orthogonal-
ization process for h „. If the inner product in
the GS formula. (1) is given by (2), then there is
a one-to-one correspondence between the two
processes. It is, however, vastly simpler to ob-
tain f by the RR than by the GS formula if the
dimensions of S~ are large. " The RR is a basic
property of h „. Hence it must be contained in
all exact dynamic theories operative in b„.
III. Recurrence relation in g, space. —Con-

sider a complete set of nonnegative powers of x,
x=(i, x, x', . . . ,x', . . . j in a Hilbert space S,
where x is a real variable. We define the inner
product of X and & in h as

(X, I') = J .dx w(x)XI', (4)

where w(x) is a weight function. For simplicity
I shall assume w(x) to be an even function of x.
Then, x is not an orthogonal set. Vfe can con-
struct an orthogonal set p =(p„p„p„.. . , p„, .. .j
in S„, the Hilbert space of x defined by (4). As

in II, I shall construct p inductively.
If we choose p, =l, then p, =x because of (4).

Letp, =xp, +q, where q is to be determined by
orthogonality, (p»q) =0 and (p»p, )+(p„q) = 0.
Immediately we can write q = +P „where n is a
constant determinable from the second condition.
Hence, p, =xp, +a,p„where a= —(p„p,)/(p„p, )-=a, . Similarly letp, =xp, +r, where r is to be
determined by orthogonality, (p„r ) = (p„r) = 0
and (p„p,)+ (p „r)= 0. Then r = pp» where p

= —(p „p,)/(p „p,) = a-, . Hence p, =xp, + a,p, .
Now we can obtain a RR for P „„bywriting P „„
=xP„+q„, v ) 0, where q„ is to be determined by
orthogonality. The orthogonality (p „„,p, ) = 0
for ~ (v gives (p„,p„)+(p, „q,)=0, and (p„
q„)=0 for ~- v but K& v —1. Hence q„=a„p„»
where a, = —(p„,p„)/(p„»p, ,). Thus we ob-
tain

1 =za, (z)+b, ,a, (z),

a, ,(z) =za„(z)+A„,a„,(z), v) 1,

(Sa.)

(Sb)

where a, (z)= v ra, (t)]. I shall term (8) the dual
auxiliary HH for S„. By combining Eqs. (Sa) and

(Sb), we can put a,(z) in a continued fraction as
first given by Mori. Thus the auxiliary RR is an

expression for the generalized Langevin equation
(GLE) in S„(see Sec. V). The occurrence of con-
tinued fr actions in dynamic many-body theory"
is attributable to the form of the RH (3), and
hence ultimately to the structure S~.

pv+&=xpv+a| pU-i~

with p, = 0 and a, =- l.
Equation (5) is the RR for the classical orthog-

onal polynomials. " It represents an orthogonal-
ization process for S„, equivalent to the GS proc-
ess for this space. The space S„belongs to the
cl ass +2.

lV. Auxiliary recumbence relations. —Cons ider
S~, the Hilbert space in which linear-response
theory is cast. ' It is a realization of an abstract
Hilbert space S.' Hence the RR for S~ can be
physically meaningful. The Liouville equation
dA(t)/dt =iLA(t) has a, formal solution in S„which
may be expressed as

A(t) =Z, =.a, (t)f. , (6)

where f =(f„) is given by the RR (3) and a =JLa, (t)}
is a set of time-dependent veal functions. By our
choice f, =A, there is a ready link to dynamic re-
sponse functions, i.e. , a,(t) represents the stan-
dard relaxation function (A(t),A)/(A, A) and the
other a„(t)'s are relatable to the relaxation of
the random force defined by the generalized
Langevin equation. " Then the boundary condi-
tion gives a,(0) = 1 and a„(0)= 0 for v ) 1.

By applying (6) to the Liouville equation together
with the RH (3), we obtain

a „„a„„(t)= —a„(t)+a„,(t), v ) 0,

where d., (t) = da„(t)/dt and a, =—0. I shall term
(7) the auxiliary HH for S„. By applying the La-
place transform 7 on (7), we obtain
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These RR's for S„also provide a prescription
for acceptable solutions for the relaxation func-
tions a. For example, we can at once rule out
the classical orthogonal polynomials for (a„(z)].
since the RR for orthogonal polynomials is not
congruent to the dual auxiliary RR." Also, since
norms are nonnegative real quantities, ~ )6, ) 0.
Thus the auxiliary RR (7) does not admit expo-
nential functions as solutions for a,(t) (Ref. 16)
[or the Lorentzian form for a,(z)] if the Liouville
operator L remains rigorously Hermitian on S~."

V. Physical applications. —I now show the con-
nection to the GLE."" From (8a), we have a, (z)
=[z+q(z)] ', where a,(z) and y(z)—= &,a,(z)/a, (z)
are the Laplace-transformed relaxation and mem-
ory functions, respectively. The memory func-
tion y(z) can be obtained from (8b) by setting v = 1,
and thereby transformed into a continued fraction
in terms of (6„],v) 2. The random force f(t)
can be shown to be f(z) =Q „",[a„(z)/a, (z)]f„,
where f(z) = f7(t) Obser. ve that y(z) =(f(z),f,)/
(f„f,). These are precisely the expressions ob-
tained by the projection operator technique. "

I will next illustrate the utility of this formalism
by applying it to a physical problem. Consider a
homogeneous many-el. ectron system II placed
under an external perturbing field, which is suit-
ably turned off at t = 0." For t )0 there will be
density fluctuations about the Fermi sea. We
can study the time evolution via the GLE by taking
the dynamical variable A (Ref. 7) to be the density
fluctuation operator p~, where k is the wave vec-
tor."" Then the static density response function
is (p„,p~ ), where the inner product is given by
(2). That is, the Hilbert space of p„represents
a physical realization of 8„. Hence, for this
fermion system we can obtain dynamic quantities
by the RR's (3), (7), and (8), given(&„).

For density fluctuations in two dimensions at
T = 0 and k «k~ (k„ the Fermi wave vector), the
6 's have been calculated by aid of (3),"viz. , &,
=~ +I', b. „=h for v) 2, where 6 =(ke, )' and I'
=2mpe'k/m (s F the Fermi energy, p the electron
number density, m mass, e charge). The dif-
ference between the ideal and nonideal systems
appears only in ~, through I . For the ideal sys-
tem (I'= 0) these b, 's imply that the auxiliary RR
(7) is just the RR for the Bessel functions J„.
Hence, a, (t)=(2p. ) "J„(pt), v) 0, an. d p, = M'~'.
One can also obtain a,(z) by (8) and a,(t) by 7' '
x a,(z), and hence a, (t), v) 1, by (7)." Thus,

f(t)= Z [('t -) ""2v~.(ut)/~t]f„
V=1

where (f „I is given by (3) with f, =p„.
For the nonideal system (I'0 0) it is also pos-

sible to obtain an analytic solution for a, (t) by (8),
and hence a„(t), v) 1, by (7). For density fluctu-
ations in three dimensions I have similarly ob-
tained dynamic solutions. I have also success-
fully applied this formalism to obtain critical
dynamics of the spin-& van der Waals model. "
Solutions to these problems will be given else-
where. Our formal method appears to have pos-
sible applications to a variety of time-dependent
many-body problems.
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