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A new symmetry-adapted perturbation theory is suggested with the following improved
properties: The primitive function is localized, and for Coulomb potentials has only a
sirgle cusp; the modified equation has no spurious bound states. A systematic tight-
binding perturbation expansion involvirg only two-center integrals is derived.

PACS numbers: 02.90.+p, 03.65.0e, 31.15.+q, 71.10.+x

In many branches of physics complex systems
are described as consisting of simpler "building
blocks, " e.g. , a molecule or a sol.id may be treat-
ed as built up of singl. e atoms or "cells." In the
case of a small overlap between neighboring cells'
wave functions, approximations of successively
increasing order may be constructed starting
from "atomic" orbitals. In the present Letter we
develop an approach to such problems using a
new formulation of a method used in quantum
chemistry" and in nuclear physics' under the
names of symmetry-adapted perturbation theory
(SAPT) and perturbation theory for projected
states, respectively. SAPT is used when the corn-
plex system possesses some symmetry (e.g. , re-
flections, translations, identical-particle inter-
change, etc.). Let P be a projection operator
(P'=P, P =P) onto some representation of the
symmetry group of H, where II is the Hamil. tonian
of the complex system. We have [P,H]= 0, with
IJ = T+U, where T and U are the kinetic and the

potential energy operators. The complex system
wave function ( (0( =E(, Pg = g) cannot usually
be approximated by the solution pp of an "atomic"
problem, Hppp Eppp @p T+Vpp where V, is an
atomic potential. Rather, one needs all the atom-
ic orbital. s which are obtained by applying to pp
the operations of the symmetry group of IJ. In
SAPT a modified equation is introduced, ' for a
"primitive function" p,

pp is expected to be a good approximation to p,
and g is obtained from p by projection (g ~Pp).
There is an extensive literature' "on the opti-
mal choice of the functional. F(E,cp), so that high-
er-order corrections to pp may be treated by
per turbation theory.

The wave function g is extended o' er the whole
system, whereas atomic orbitals are centered on
particular atoms. The requirement that p of Eq.
(1) be localized, similarly to y„ is an obvious
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condition on the choice of F(E,p). This problem
was studied previously in several works, "with
different definitions of a "localized function. " In
molecular and solid-state calculations g usually
has "cusps" at atomic centers, due to Coul. omb
potentials. A natural condition on the optimal g
[Eq. (1)] is that it should have only a single cusp;
to our best knowledge, this question has not been
studied systematically in SAPT. '

We suggest a new formalism with the fol. lowing
improved properties: p is exponentially localized
and may be chosen to have a single cusp. We
prove a one-to-one correspondence between the
bound-state spectrum of the modified equation
and the original equation (H$ =Z().' The localiza-
tion and single-cusp properties of p improve the
convergence of approximation methods. After
introducing the general. formalism, we mention
briefly possible applications and consider in
more detail the tight-binding approximation for
Bloch states in solids, constructing a perturba-
tion expansion for this ease. The improved con-
vergence properties of this new expansion are
studied in a solvabl. e Kronig-I'enney model.

Let Q» Q». . . ,Q, denote the operations of the
symmetry group of H, with Q, = 1. Note first that
the spatial symmetry operations (reflections,
translations, identical-particle interchange) act
separately on the factors of a product: Q, (f,f,)
= (Q,f, )(Q,f,), Q; (f,/f, ) = (Q;f,)/(Q; f,) (e.g. , for
reflection symmetry: g =2, Q, =R, and the first
equation reads R[f,(x)f,(x)]=f,(-x)f,(-x)]. Any

spatial. symmetry commutes with the kinetic en-
ergy T, and therefore [Q, ,H]=[Q, , T)=[Q, , U]
= 0. For a specific one-dimensional representa-
tion, the projector P is of the form'

1P = —E q„*Q„,
g n=i

where the characters q, satisfy ~q,. ~'= 1. We
start with the modified equation in the form

B'p =Eg, with II' = T + SU, (2)

where the operator S satisfies' PS =P and SP
=S." Specific choices of S will be discussed
later in connection with localizing p. Note that
Eq. (2) reduces to Eq. (1) for E= (1-S)Up. Ap-—
plying P to H'p =Ep we get H(Pp)=E(Pp); Pp is
the desired solution (g ~Pp), unless Pp = 0 (a
spurious solution' ). However, assuming Pp = 0,
we get SUp =SPUp =SUPp = 0, and Eq. (2) re-
duces to Tp =Ey. The last equation has no bound
(E &0) states, and therefore Eq. (2) has no spuri-
ous bound states. " Conversely, for a given

Q q,. *(Q,&)q, P = gLP =P.

The modified equation reads

[T +(l/L)UP F. ]p = 0—,

and localization of p arises similarl. y to the usual
Schrodinger equation: the "potential" term (l/
L)UPp decays outside a single cell (because of
the presence of l). Thus bound states of Eq. (4)
decay exponential. l.y.

The potential energy U is completely symmetric
and may be represented as a projection, U =+,. Q,.
& VQ,. t. Usually, there is a natural choice: V
=—V, in a problem. Choosing l —= V, we get"

(T + g Vg E)p = 0. -
Consider, for example, the H&' ion, with two

fixed nuclei at +ax: H =T —e'/)r —ax~ —e'/)r+ax~.
The natural choice of V, is V, = —e'/~r —ax~. We
get

H' =T —(e'/~ r —ax~)(1.+qP)
=T+ V„+q,VP, (6)

where q, =+ 1 (- 1) for positive- (negative-) parity
states. For a large separation 2a, y is localized
at + ax, and B' is a singl. e-center operator with a
Coulomb term at +ax onl.y. The overlap part in
the equation H'p =Ep is q,Vpp, with V, centered
at+ax, and Rp at —ax, and may be treated as a
perturbation to H, = T + V, . Improved convergence
of perturbation series based on equations of the
type of Eq. (6) was studied by the authors. 5

For intermolecular interactions, the rel. evant

bound state g of the proper symmetry (P( =()
there exists a corresponding solution p of Eq. (2).
Indeed, p ~ (E —T) 'SU(, as can be verified by
direct substitution. The above property of the
spectrum of Eq. (2) was not established for other
formulations of SAPT.

In order to local. ize bound-state solutions of the
modified equation, we choose

l . 1S= P, —with L= —Q (Q„l),
n=1

where the localizing function / is chosen so that it
decays outside a single cell similarly to the atom-
ic potential. ; I- is a completely symmetric projec-
tion of /. The condition SP =S is trivial. ly satis-
fied; let us check whether PS =P:

PS = Q q, *Q, (lP)
1

gL
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symmetry is electron exchange. "Note that a
many-electron p may be localized at different
centers for different electronic coordinates
[choosing an appropriately localized l(x»x». . . )
in Zq. (4)].

In the following we apply our method to the
periodic potential problem (for several. other
methods of defining and calculating localized
atomicl. ike orbitals in this case, see Refs. 6, 13,
and 14). Let R„denote lattice vectors (with R,
=0); we have Q J'(x}=f(x—R„},q„= exp(-ik R„),
g- ~, where k labels the representations. The
periodic potential U(x) is U(x) =Q„V,(x —R„)
=Q„Q„V0(x)Q„~; the condition Vo(~) =0 deter-
mines the zero of energy; in practice, one will

use a solvable atomic-type Vp The limit g -~
is straightforward in Eq. (5), and we obtain

[Ho+ V,(x)g exp(ik R„)Q„-E» ]y» = 0,
n&0 (7)

H, =T+ V,(x).

This equation is useful in studying the lowest
"tight-binding" (TB) energy bands which result
from broadening of atomic bound states (p,). In
this case p& of Eq. (7} is localized at the origin,
and for Coulomb potentials has a single cusp. "
We set up a perturbation expansion, E & =E& "'
+E p +. . . Rlld +7I =+7I +Q g + ~ . . based on
the smallness of matrix elements arising from the
terms exp(ik'R„)V, (x)Q„q&(x), n& 0, in Eq. (7).
We have"

gk "'~+„exp(ik ~ R„)p,(x —R„),
E7p Eo E k 2 (y, (x)l V.(x)IV.(x —R. )) exp(ik' R„)/(V, ly.),

n&0

etc. (t, "' is the usual TB trial wave function; Eg "'+Ep"' is compatible in accuracy with the usual
TB expectation value (we give an example below). However, note that our E» "' involves only two-
center integrals, "and this property holds in all orders of our perturbation expansion, whereas usual-
ly in TB calculations three-center integrals appear. "

Let us consider a solvable Kronig-Penney model"—a one-dimensional. attractive 6-function "comb. "
The atomic problem with H, = --'d'/dx'- Z5(x) has one bound state: y, =Z'~'e e~"~, E, = -Z'/2. We
consider the lowest energy band of

1 d2 00

H = ——,-Z Q 5(x -na)
2 dx

in the TB (Za»1) limit. The modified "Hamiltonian" is H„'=- —,d'/dx' —Z5(x)+AH» where hH»
= —Z5(x)g„~,e'»"'Q„. We recall that the second-order energy, E„"', is given by (y, lhH»I'bH»ly, ),
where I' is the reduced resolvent of H„ in our case the explicit form of the kernel I'(x,y) of I' is

I'(x, y) =(lxl+ lyl+ I/2Z) exp(-Zlxl —Zlyl) —(1/Z) exp(-Zlx -yl).
Using the above-listed formulas, we have E, "'=—Z'Y(Za, ka),

E, "'= —Z'[Y'/2+ (Za)YBY(Za, ka)/& (Za)],

where

Y(a, p)—= 2e (cosp —e ")/(1 —2e cosp+e '").
The exact bound-state solution of H, 'y» =E» p» is p» ~ exp(-P» lxl), E, = —P„'/2, where P» is a posi-
tive root of P» =Z[1+Y(P»a, ka)]. Our method allows the derivation of successively higher-order ex-
pansions in terms of parameters which describe the smallness of "overlap" terms. In the Kronig-
Penney model the natural expansion parameter is e '; in fact,

E„/E, =l+e '(4coska)+e ' '(12cos'ka —8Zacos'ka —4)+O(e ' ').
Our E» "'+E„"'reproduces correctly the first two terms (when expanded in powers of e ~'); E„"'
+E„"'+E~"' reproduces also the third term. The simple TB expectation value gives only the first
two terms correctly; in fact,

(g» '"lHl g» "')/(E, (g» "'l g» '"))= I+ e ' (4 coska)+ e '~'(8 cos2ka —8Za cos ka - 4) +0 (e 'x'
)

Thus far we have used the Rayleigh-Schrodinger perturbation series. Consider now the Brillouin-
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Wigner perturbation series: y, (x) = ppp+Q„, (Ab H„)"y, =pp+p„"'+p„"'+. . . , where A is the re-
duced resolvent of IJp calculated at the exact 8» the kernel A(x, y) of A is known in closed form. " One
may derive the following result: The rth term (x) 1) is

Y(P~a, ka) i Z+P„Y(P„a,ka)„" Z+P~

We observe that pp„'"'"'/cp„'"' is a constant and thus the series converges geometrically if ip„'""'/
pp„'"'i (1. In the smal. l-overlap limit (e ' «1) we have

p» '"'"/pp~ '"'=(1 —2Za) coskae z'+O(e 'z'),

(8)

and the rate of convergence is related to the smallness of the overlap. Summing the series, we re-
derive" y, = [(Z+p, )/2v Z] exp(- p~ ~xi). The primitive function y„ is similar to the atomic y, [note
that P„=Z+0(e z')] .

In summary, we have suggested a new SAPT method which employs a primitive function localized
similarly to the atomic one. Our method is free of spurious-state problems, and the primitive func-
tion has onl. y a single cusp when Coulomb potentials are present. The new method yields a systematic
perturbation expansion in which onl. y two-center integrals appear, even if the potential of the complex
system is multicentered.

The authors gratefully acknowledge helpful discussions with Professor B.Atalay, Professor R. E.
Peierls, Professor E. P. Wigner, and Professor J. Zak.
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