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Geometrization of Quantum Mechanics and the New Interpretation
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It is shown that the new interpretation of the scalar product in Hilbert space recently
proposed by Aharanov, Albert, and Au is in fact the one underlying the stochastic phase-
space formulation of nonrelativistic quantum mechanics. The extrapolation of this inter-
pretation to the relativistic domain and its relationship to the program of geometrizing
quantum theory and quantizing space-time are discussed.
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In a recently published Letter' Aharanov, Al-
bert, and Au have presented a new" interpreta-
tion of the scalar product in Hilbert space. This
Letter was soon followed by a Letter of O'Con-
nell and Bajagopal' pointing out the equivalence
of this interpretation (via recent results by
O' Connell and Wigner") to Wigner's pioneering
work' on phase-space distributions in nonrelativ-
istic quantum mechanics. In the present note we
intend to point out first, that in fact this new

'

interpretation is the one underlying the stochastic
phase- space approach to nonrelativistic quantum
mechanics, "and, second, but more important,
that this entire approach extends' to the relativis-
tic domain, where it leads' to a consistent opera-
tionally based concept of quantum space-time, or,
equivalently, to a new approach to the geometriz-
ing" "of quantum mechanics.

For the sake of simplicity, let us consider only
single quantum particles of spin O. The nonrela-
tivistic quantum mechanics of such particles can

be formulated over spaces of exact values, such
as the conventional configuration or momentum
spaces ~', as well as" over spaces I'~ of sto-
chastic phase-space values (q, y„-) && (p, y~)—these
last spaces being special cases of Menger-Kaid
statistical metric spaces." In the former case
the measurements of position o~ momentum are
assumed to be perfectly accurate, whereas in
the second case the measured values are stochas-
tically spread out (so that the uncertainty princi-
ple is not violated' ), and in the optimal cases
they represent measurements with extended test
particles of normalized proper wave function p
(in the sense of Lande" and Born").

Mathematically, these nonrelativistic stochas-
tic phase-space representations can be arrived
at by considering" unitary ray representations
of the Galilei group on the Hilbert space I-'(&) of
functions g(q, p) with inner product

Q, I P,) = f„g,*(q,p)g, (q, p)d'q d'p . (1)
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For a certain choice of gauge, ' these representa-
tions yield the following representation of the
canonical commutation relations (CCR's):

Q'=q'+ iha/ap, , P' = —iIa/aq'. (2)

Such representations are, however, highly re-
ducible. One method' of finding their irreducible
components is to construct unitary mappings
which take the configuration-space wave function
g(x) of a particle into its representative

=(2nh) "'fexp[ (i/-h)p x]q*(x —q)g(x)d'x (3)

in a subspace I-'g'~) that carries an irreducible
representation of the CCR's in (2). The quantity
I g(q, p)(

' equals the Aharanov et al. expression
(4) in Ref. 1, but it can be interpreted not merely
as a "propensity", but also as a genuine probabil-
ity density of the stochastic phase space &~ of
stochastic values (q, y~) && (p, y~) with confidence
functions

Qq = —ihvq, Pq =ihvq (10)

of the RCCB's in (9) by means of covariant de-
rivatives

counterpart, i.e. , replacing the Galilei group by
the Poineare group, nonrelativistie by relativis-
tic phase space [of values (q, p) with q in Minkow-
ski space and p on a mass hyperboloid], nonrela-
tivistic by relativistic CCR's (i.e., BCCR's),

[q",P")=-i@a"", Iq", q'] =[P~,P"]=0, (9)

p(q, p) by g(q, p), etc. This leads to a consistent
solution of the loealizability problem for relativ-
istic quantum particles —which, by Hegerfeld's
theorem, "has no consistent solution compatible
with sharp localizability and relativistic causal-
ity. This in turn leads to a concept of quantum
space-time' based on stochastic geometries" de-
lineated by extended quantum test particles in
free fall. In its most recent, "'"geometrized ver-
sion, this approach is based on realizations

X;(x) =lq(x-q)l', Xp(k) =lq (k-p)l'. (4) v„=a/aq" +0'„, v-„=a/ap" + 4 „.
The correctness of this interpretation follows
from the marginality properties""

fig(q, p)l'd'p = fl p(x.)l 'Z-, (x)d'&, (6)

fl 0(q, p)l'd'q = fl y(k)l 'jp(k)d'k (6)

as well as from the existence"' of an associated
conserved [for q(x) real rotationally symmetric]
probability current

j (q) =f(p/m)l C(q, p)l'd'p,

which in the sharp-point limit g~(x)- 5 (x —q) of
pointlike test particles merges in its conventional

counterpart,

The above eovariant derivatives ean incorporate
metric as well as gauge aspects that reflect some
multiplet structure of quantum test particles.
These realization. "-. establish, on one hand, a
link" with Born's reciprocity theory, "thus lead-
ing"'" to mass formulas that yield linear Regge
trajectories, "whereas, on the other hand, they
are intimately related" to stochastic phase-space
representations of the Poineare group when g" '
is the Minkowski metric tensor. These represen-
tations are fixed by specific choices of the gauges
4'„and +~, such as, e.g. , the simple choice

i(q) -@/2')[q*(q)vy(q) —[vg*(q)]y(q)j (6)
~, (q,p)=( / i)h„q~ (q,p)=o (12)

and also from a multitude of other results, as re-
viewed in Bef. 20 (e.g. , some of the O' Connell-
Wigner results of Ref. 4 have been previously de-
rived in Ref. 18 within this framework).

The transition' to the relativistic regime is
achieved within this formalism by simply replac-
ing each nonrelativistic concept by its relativistic

for a spinless particle without internal isospin
structure, which nonrelativistically corresponds
to the choice occurring in (2). However, whereas
no representations of the Poincare group ean be
extrapolated to the generic case of curved spaee-
time, the RCCB's remain meaningful even in that
case, and can be used in the realization of coordi-
nate transition amplitudes'"

+B,A(qB pBiqA pA) fexp[(~k)v (IA'qA ™BqB)]gA(vpA)qA(v pA)qB(v .p, )6(v' —l)d'v,

The probabilities associated (cf. Ref. 9, p. 37) with these amplitudes correspond to measurements of
stochastic position and momentum of an A particle by means of a & particle, rather than by measur-
ing rods" (with the roles of A and & as "system" and apparatus" being reversible) —and this is exact-
ly the kind of interpretation considered by Aharanov, Albert, and Au in the concluding paragraph of
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Ref. 1. Moreover, if we set in (13) k =m„v =m~v and write

P(~-f) =(2«)'"nA(~ f), 0(&-f) =(2«)"'nB(~ f), (14)

then upon making the transition (as in Ref. 8) to the
counterpart of (13) for t„=i~:

&a,~(q, p~;q, p~) =(2«) "'Jexpl(i/I)(q~-q ).
Comparison with (3) via the use of Fourier trans-
form yields the result (since p and g are real and
rotationally invariant

+B,

ACERB

PB QA PA) 4(qB QA PJ9 PA)' (1 )

Hence I Ks zl' is a generalization of Eq. (4) in
Ref. 1 to three-vectors, whereas Eq. (5) in Ref.
1 can be used as an alternative approach" to
stochastic phase space, which is based on the
Weyl group l the appearance of exp(io. P/Ã) in Ref.
1 is due to an alternative choice of gauge, which
corresponds to setting in (11) C„= qiq/, +„
=-iP„/2A, instead of the values in (12)]. How-

ever, I &Q gl' emerges not as the mere "propen-
sity" of Refs. 1 and 2, but rather as a bona fide
probability for two extended particles A. and 8 to
be at the relative stochastic distance ~ —~ and
to exhibit the difference p~ —p~ in their stochas-
tic momenta. In turn, the systematic introduc-
tion of such stochastic values in the expression
of measurement results even at the pure theoreti-
cal level brings about"'" the mathematical real-
ization of Born's fundamental data"'" that all of
physics (classical as well as quantum) should be
formulated exclusively in terms of such values
instead of deterministic ones, i.e., that State-
ments like A. quantity x has a completely definite
value'. .. have no physical meaning. . . and must
be eliminated" (Reference 29, p. 187). As a by-
product of such an approach we can achieve in
quantum physics inf ormational completeness, '"
i.e., set quantum states in one-to-one correspond-
ence with probability densities over stochastic
values —a feature discussed by Aharanov, Albert,
and Au in Ref. 1, but previously considered for
stochastic phase space as well as spin values by
oth rs.""

In summary, the stochastic phase-space ap-
proach to nonrelativistic quantum mechanics is
based on realizations, of the CCR's [such as (2)]
in the Hilbert space L'(I ), whose elements
P(q, p) can be interpreted as probability ampli-
tudes, which give rise to conserved probability
currents (7). These probability amplitudes and
currents correspond to measurements with (sto-
chastically) extended rather than point particles.
It is this central fact that distinguishes the sto-

nonrelativistic regime, we get the nonrelativistic

k]V%-p~)4(t -p )d'I . (15)
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chastic phase space from other phase-space ap-
proaches to quantum mechanics, and makes pos-
sible its consistent extrapolation to the relativis-
tic regime, where there are no covariant counter-
parts of such nonrelativistic concepts as position
operators, Wigner transform, etc. The stochas-
tic phase-space formulation of relativistic quan-
tum mechanics yields, however, covariant proba-
bility densities, covariant as well as conserved
probability currents, and covariant phase-space
propagators. By incorporating the key ideas of
Born's reciprocity theory into this framework
one arrives at a geometrized version of relativis-
tic quantum mechanics, which is based on the
realizations (10) of RCCR's in terms of covariant
derivatives. References 23, 25, 26, 33, and 34
provide a sample of recent new results derived
within this framework.
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A new symmetry-adapted perturbation theory is suggested with the following improved
properties: The primitive function is localized, and for Coulomb potentials has only a
sirgle cusp; the modified equation has no spurious bound states. A systematic tight-
binding perturbation expansion involvirg only two-center integrals is derived.
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In many branches of physics complex systems
are described as consisting of simpler "building
blocks, " e.g. , a molecule or a sol.id may be treat-
ed as built up of singl. e atoms or "cells." In the
case of a small overlap between neighboring cells'
wave functions, approximations of successively
increasing order may be constructed starting
from "atomic" orbitals. In the present Letter we
develop an approach to such problems using a
new formulation of a method used in quantum
chemistry" and in nuclear physics' under the
names of symmetry-adapted perturbation theory
(SAPT) and perturbation theory for projected
states, respectively. SAPT is used when the corn-
plex system possesses some symmetry (e.g. , re-
flections, translations, identical-particle inter-
change, etc.). Let P be a projection operator
(P'=P, P =P) onto some representation of the
symmetry group of H, where II is the Hamil. tonian
of the complex system. We have [P,H]= 0, with
IJ = T+U, where T and U are the kinetic and the

potential energy operators. The complex system
wave function ( (0( =E(, Pg = g) cannot usually
be approximated by the solution pp of an "atomic"
problem, Hppp Eppp @p T+Vpp where V, is an
atomic potential. Rather, one needs all the atom-
ic orbital. s which are obtained by applying to pp
the operations of the symmetry group of IJ. In
SAPT a modified equation is introduced, ' for a
"primitive function" p,

pp is expected to be a good approximation to p,
and g is obtained from p by projection (g ~Pp).
There is an extensive literature' "on the opti-
mal choice of the functional. F(E,cp), so that high-
er-order corrections to pp may be treated by
per turbation theory.

The wave function g is extended o' er the whole
system, whereas atomic orbitals are centered on
particular atoms. The requirement that p of Eq.
(1) be localized, similarly to y„ is an obvious
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