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Exact Critical Point and Critical Exponents of O(n) Models in Two Dimensions
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A two-dimensional n-component spin model with cubic or isotropic symmetry is map-
ped onto a solid-on-solid model. Subject to some plausible assumptions this leads to an
analytic calculation of the critical point and some critical indices for —2 - n -2.
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1/v=yr, =4-2t,
—8/v=yr2= 6 —6t,

(2)

(3)

with 1 &I, &2. At the critical point the spin-spin
correlation function decays with distance r as

Two-dimensional classical O(n) spin models, '
alias n-vector models, have been discussed in a
variety of contexts. The O(2) model describes
the superfluid-to-normal transition of helium
films. ' The n-vector model with cubic symmetry
breaking provides the universality classes of
many ordering transitions of monolayers. Ex-
amples on a square substrate are the ordering
into a 2X2 or 2xl array (n=2) and into ax 2 &&&2

array (@=1).' In the limit n-0 the O(n) model
describes the scaling behavior of long polymer
chains. 4

The O(n) phase transition in general dimension
d has been studied theoretically by means of ex-
pansion about special values of n or d. The model
served as a paradigm for the 4 —& expansion. '
The critical exponents for n &2 have also been ex-
pandect in d —2. For general d the values n = —2

(Gaussian model) and n =~ (spherical model) have
permitted exact calculations, ' the latter serving
as a basis for expansions in 1/n. Thus the sec-
tion of then-d plane, 2 &d &4 andn & -2, which
contains most of the physically applicable models
is almost encompassed by exact results. ' For d
=2 and —2 &n & 2 this Letter presents some re-
sults which complete this enclosure. The main
conclusions are summarized below.

To define notation let the singular part of the
free energy of a two-dimensional O(n) model be
e'"(f,+f,~ +. . . ), where f, and f, are analytic
functions of e = ~T 7', ~/T, , and -the ellipsis rep-
resents singular contributions of higher order in
E. The exponents v and 8 are computed for

n = —2 cos(2m/t),

and are

r ". The exponent I conjecture is

2 —q/2—= y„= 1+3/4t+ t/4. (4)

In the low-temperature phase (for n &1) there is
still algebraic decay of the spin-spin correlation
function' with the exponent also defined by Eqs.
(1) and (4), but now on the branch t &2. These
results are obtained from an analysis of an O(n)
model on a honeycomb lattice, for which the
critical point is calculated as well.

Consider an n-component spin model with parti-
tion integral

Z„„,=f II (1+xS, 'S&) QW(S„)d'S, .

The first product is over nearest-neighbor pairs
of sites of the honeycomb lattice with free bound-
aries. The weight function W(S) is either isotrop-
ic, i.e., invariant under arbitrary rotations of S,
or cubic, i.e. , invariant under permutations and
inversions of the components of S. The length of
the spins and the weight function are normalized
such that fW(S)d2S=1 and fW(S)S Sd S=n.
has been shown recently' for both cubic and iso-
tropic S' that Zo(„) can be expanded in diagrams
consisting of loops on the honeycomb lattice:

Zp& &

= +~X (6)

where c is the number of loops in diagram G and
L their combined length.

Now consider a triangular lattice with each site
having an integer height variable M, so that no
two adjacent heights differ by more than one. Any
basic triangle can have all three of its M's equal
or one different and two equal. When all three
heights are equal the triangle has weight one. If
one of the three M''s, say &» is different from
the other two, M, and M„ then the triangle has
weight xe' if M, &M, =M, or xe ' if M, &M, =Al, .
Examples of these configurations are shown in
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and weights ~, through ~, are associated with
six allowed arrow configurations, shown in Fig.
3. The weights are

(d . . . Q3 = 7 7 1 1 g4+ l8 Q —EO.

FIG. 1. Configurations of integers on a triangle.
The weights a, 5, and q are invariant if the configura-
tions are rotated in space, or if all heights are changed
by the same amount.

Fig. 1 with weights

a, b, c=l, xe'", xe (7)

This defines a solid-on-solid (SOS) model. The
partition sum can be expanded in diagrams repre-
senting domain walls between regions of different
height. An arrow is placed on the domain wall
with the higher M to the l.eft of it, as indicated in
Fig. 1. The factors e' and e ' are then as-
sociated with left and right turns of the oriented
domain wall. The partition sum is

Zsos ~op+ e ic &i -~)

where the summation is over graphs consisting of
oriented loops on the honeycomb lattice with com-
bined length I- and a total of I left ands right
turns.

Th= summation over the orientation can be per-
formed first and for each loop independently.
Since each loop makes exactly one full turn in the
plane it contributes either 6 or —6 to l -r.
Hence

Z Q +l (eei&+e ei&)c-

where c is the number of loops or separate do-
main walls. Clearly Z«„& equals Zsos if

The edges of the lattice can be interpreted as do-
main walls in a SOS model, like in Fig. 1, with
the greater height to the left of the arrow. I et
integers M be placed on the hexagonal faces of
the Kagome lattice and half-integer variables m
on the triangular faces, so that each m differs by
2 from the adjacent M. Examples of configura-
tions of M and m are shown in Fig. 3.

A special case of (11),
2iQ, 2iA

(d~~. . . ~(d6 =T~ 7 1 1 e (12)

w=2A cos(3a). (13)

Thus the 6V model (12) is equivalent to the SOS
model (7) and hence to the O(n) model (4).

Another special case of (ll),
(d~~. . . R6 =T~ 'T~ 1 1 e ++ Te

e "~+~e'~, (14)

is equivalent" to a Potts model on a triangular
lattice. The Potts Hamiltonian is

represents the following interaction of M and m.
A factor 7 is associated with each unequal pair of
adjacent M. Each nearest-neighbor pair of 34 and
rn contributes ei if m&M or e ' if m&M.
Therefore the m do not interact among them-
selves and can be summed over. This leaves an
effective interaction among the M summarized in
the configurations of Fig. 1, with weights a, b,
c= 2cos(3n), we'", we ' . Taking the first weight
as a normalization this is equivalent to (7) for

n = 2 cos(6a). (10)
-PH= Q J5~ ~

&i/)

A third model to be considered is a six-vertex
(6V) model on a Kagome lattice" shown in Fig. 2.
Arrows are placed on al. l the edges of the lattice,

summed over the edges of the triangular lattice,

I I

I 0 0 I

2 2

(UI (dp

I I

0 0 0 0

2 2

Q) g Q)p

I

ago

A@6

FIG. 2. The Kagome lattice. Vertices of the three
sublattices A, B, and p differ by rotation over + 27r/3.

FIG. 3. The configuration of the six-vertex model
as they appear on sublattice A (see Fig. 2). Rotation
of the vertex over + 27r/3 to get configuration on sublat-
tice g or C leaves the weight invariant. The numbers
placed around the vertices are I and m as explained
in the text.
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with variables o,. = 1,2, . . . ,q and q = 2+ 2 cos(6q ).
J is defined by e —1=2 cos(3p)/~.

The weights (14) and (12) evidently coincide if

w = —2 cos(3y), o. =2y+m/2. (16)

Thus the three-dimensional. parameter space of
the 6V model (11) contains iwo-parameter sub-
spaces equivalent to the O(n) model (12) and to
the Potts model (14), which intersect in Eq. (16).

It has been recognized that the critical. behavior
of SOS" and 6V models' can be understood as
that of a Gaussian model with spin-wave fields,
which in turn is equivalent" to a Coulomb gas
(CG). The 6V model (11)behaves like" CG with
fugacity z, for positive and z for negative unit
charges and temperature 1/t low enough so that
multiple charges are bound. The renormaliza-
tion-group equations read"

dt/dl = —t z,z

dz, /dl= (2 —t)z, +z, 'z g(t),

dz /dl=(2 —t)z

(17)

(18)

(19)

The function@ need not be specified. These equa-
tions hold to first order in z, to zeroth order in
the fugacities of multiple charges, and as such to
all orders in z, . When t(2 the fugacities z, and
z grow in magnitude under renormalization. If
z,z &0 they continue to grow indefinitely. How-

ever, if z,z (0 then t increases which eventual-
ly makes z, and z irrelevant and causes them to
vanish. Therefore, the locus z =0 is critical,
separating regimes that renormalize towards the
Gaussian line (z, =z =0) and away from it. It
has been shown" that the Potts subspace is tan-
gential to this separatrix at the Gaussian line. If
one assumes that the Potts model renormalizes
onto itself, the subspace (14) must coincide" "
with the locus z =0. This implies that the inter-
section (16) represents a singular line of the

O(n) subspace. Hence the critical point of the

O(n) model (4) follows from substituting Eq. (16)
into Eqs. (10) and (13),

x =[2+(2-n)' '] ' ' (2o)

This reduces to the known result for" n=1 and'

2, and agrees with numerical estimates" for n
=0. The regime x)x, renormal. izes towards the
Gaussian line, which governs the critical fluctua-
tions of the Goldstone modes. '

The thermal critical exponent of the O(n) model
is the one associated with z . As a consequence
of charge neutrality, however, the free energy
depends on z through z, z . Therefore, as z
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vanishes at finite z, the effective exponent is
that of the product z,z, namely, y»=4 —2t

[Eq. (2)]. A similar argument" yields for a cor-
rection to scaling exponent yr, =6 —6t [Eq. (3)].
The eight-vertex exponent y,& is known exactly
(y,v=6&/m), "and can also be expressed in the
CG language (y» = 2 —1/t), in which it is as-
sociated with magnetic charges. " This gives a
relation between y and t, which substituted in
Eqs. (16) and (10) yields f as a multivalued func-
tion of n, Eq. (1). The branch 1 (t (2 gives the
critical-point behavior, and the branch t )2,
where z, and z are irrelevant, pertains to the
low-temperature phase of the O(n) model.

Equation (2) for exponent v was recently con-
jectured, "on the basis of its known values for
n = —2, 1, and 2, together with the assumption of
a simple dependence on n. The success of such
arguments suggests a similar guess for the mag-
netic eigenvalue, Eq. (4). This exponent predicts
how the longitudinal susceptibility in the low-
temperature phase of the O(n &1) model. diverges
as the field vanishes. It is remarkable that Eq.
(4) is almost identical to the conjectured magnetic
eigenvalue of the Potts modei2' y„p =1+3k/4+1/

The results of this Letter are derived for a
particular, somewhat unphysical model, which
is hopefuil. y a faithful representative of the O(n)
universality class. A positive indication of this
is that the same exponents are derived for another
O(n) model on a square lattice. " This model
turns out to be identical to a dilute n'-state Potts
model at its transition, with y» corresponding
to the second tricritical exponent" of this Potts
model. .
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It is shown that the new interpretation of the scalar product in Hilbert space recently
proposed by Aharanov, Albert, and Au is in fact the one underlying the stochastic phase-
space formulation of nonrelativistic quantum mechanics. The extrapolation of this inter-
pretation to the relativistic domain and its relationship to the program of geometrizing
quantum theory and quantizing space-time are discussed.
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In a recently published Letter' Aharanov, Al-
bert, and Au have presented a new" interpreta-
tion of the scalar product in Hilbert space. This
Letter was soon followed by a Letter of O'Con-
nell and Bajagopal' pointing out the equivalence
of this interpretation (via recent results by
O' Connell and Wigner") to Wigner's pioneering
work' on phase-space distributions in nonrelativ-
istic quantum mechanics. In the present note we
intend to point out first, that in fact this new

'

interpretation is the one underlying the stochastic
phase- space approach to nonrelativistic quantum
mechanics, "and, second, but more important,
that this entire approach extends' to the relativis-
tic domain, where it leads' to a consistent opera-
tionally based concept of quantum space-time, or,
equivalently, to a new approach to the geometriz-
ing" "of quantum mechanics.

For the sake of simplicity, let us consider only
single quantum particles of spin O. The nonrela-
tivistic quantum mechanics of such particles can

be formulated over spaces of exact values, such
as the conventional configuration or momentum
spaces ~', as well as" over spaces I'~ of sto-
chastic phase-space values (q, y„-) && (p, y~)—these
last spaces being special cases of Menger-Kaid
statistical metric spaces." In the former case
the measurements of position o~ momentum are
assumed to be perfectly accurate, whereas in
the second case the measured values are stochas-
tically spread out (so that the uncertainty princi-
ple is not violated' ), and in the optimal cases
they represent measurements with extended test
particles of normalized proper wave function p
(in the sense of Lande" and Born").

Mathematically, these nonrelativistic stochas-
tic phase-space representations can be arrived
at by considering" unitary ray representations
of the Galilei group on the Hilbert space I-'(&) of
functions g(q, p) with inner product

Q, I P,) = f„g,*(q,p)g, (q, p)d'q d'p . (1)
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