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Nonperturbative multiple-scattering theory is used to study the influence of the first
peak in the density correlation function, s(k), on the electronic properties of a structur-
ally disordered metal. The present calculations yield a well-defined minimum in the
average density of states and a corresponding peak in the electrical resistivity. The
position of these structures is directly related to that of the principal peak in s(A).

PA CS numbers: 71.25.Lf, 71.25.Mg

In a previous paper' we discussed the applica-
tion of the effective-medium approximation'
(EMA) to the muffin-tin model of a structurally
disordered metal. Our results indicated that the
EMA provides a satisfactory description of the
average electronic spectrum in the energy range
associated with the & =2 scattering resonance
charaeteristie of noble- and transition-metal sys-
tems. In the present paper we consider strong-
scattering effects that are st~uctuxal rather than
atomic in orgin. In particular, we are concerned
with the influence of the first peak in the struc-
ture function on the average spectrum. If this
peak is centered at K~, then estimates based on
second-order perturbation theory indicate that
nearly-free-electron states with wave vectors
k=E~/2 should be strongly coupled. " In a rough
sense, this coupling is analogous to the band gap
that appears in a perfect crystal as 2 approaches
the boundary of the Brillouin zone. (Here, of
course, I=K„/2, where K„ is a reciprocal-lat-
tice vector. ) Since liquid and amorphous systems
do not exhibit any long-range order, we cannot
reasonably expect a true band gap. However, be-
cause the structure function is isotropic, the
scattering associated with the first peak in s(k)
will not depend on the direction of the electron
wave vector and the effects of this scattering will
add coherently when the contributions from dif-

ferent wave vectors are summed to produce the
total spectrum. The issue then is whether or not
this scattering leads to any characteristic struc-
ture in the average density of states p(E). We
emphasize that the calculations described in this
paper are nonperturbative and address this issue
within a framework that is already known to work
well in the strong-scattering regime.

In the following section we describe the effects
of the principal peak in s(k) on the density of
states, the spectral density function, and the
electrical resistivity. In the final section we dis-
cuss briefly some physical consequences of these
effects. It is to be understood, however, that the
purpose of this paper is to clarify a qualitative
feature of the electronic spectrum in structurally
disordered systems, rather than to present re-
sults relating to a particular system or experi-
ment.

As described in Ref. 1, muffin-tin EMA calcula-
tions ar based on a system of coupled nonlinear
integral equations. The complexity of these equa-
tions implies that there is no explicit relationship
between the electronic density of states and the
pair distribution function. The character of this
re1ationship can only be studied by examining the
results of detailed numerical calculations, and
in Fig. 1 we compare the results of three such
calculations. Curve 2 is based on the same atom-
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ic potential, atomic density, and radial distribu-
tion function use in e .d Hef. 1 to describe molten Cu.
(The d states of Cu, which were of principal inter-
estinRe. , af 1 re centered at E =0.4 Hy and only

2.the upper edge od f the d band is shown in curve .)
a distinctNote that the density of states shows a distinc

t E =0 82 Ry. As indicated in Fig. 1,minimum a
the first pea in e sk th tructure function for molten
Cu is centered at K =1.56 a.u. To establish more
clearly the connection between this peak and the

(E) we have carried out two addi-
t' 1 calculations in which the atomic poten ia
is unchange , w ed hil the atomic density and radial
distribution function are resca.e1 d as follows:

and

=C fE
3

g'(R) =g(cR).

(1a)

(1b)

The corresponding structure function is

s'(k) =s(k/c).

This transformation allows us to s '
phift the eak in

s y wl ou(k) 'th t changing the effective number of near-
es neig ot hbors or violating the constrain s

alue ofs 0[
' n(2) also leaves unchanged the value o (LEquation a so

al corn ressi-=0) which is related to the isotherma c p
't is evident thatbi i y.1't '] From curve 1 of Fig. 1 it is e '

'e iththe ease , w 'e&1 hich corresponds to an s(k) w'

a prineipa pea1 k that is sharper and shifted down
thatto K =1.52 a.u. , leads to a minimum in p(E) ap

is slightly more pronounced and is s '
eshifted to low-

er energies. imiS'milarly the ease c&1 (curve 8)
shows a more udiff se minimum shifted toward
higher energies. e noW note that in all three cases
the minima in p (E) are well above the free-elec-
tron value E== (E /2)', This is a consequence of
the hybridization between the d states and the

t n states which serves to shift the con-
em hasize,duction states to higher energies. We emp

however, that the energies of interest here are
high enoug so ah that the d contribution to the spec-
trum is essen ia y et' ll xhausted and the magnitude
of p(E) is roughly equal to that given by perturba-
tion-theory estimates. ]

In Fig. we se' . 2 see that the minimum in p is
'th a decrease in amplitude and anassociated wi a

ensi-th of the underlying spectral denincrease in wid o
Ak Ety function Alv" E). The enhanced width of A, )

is, of course, con sistent with the minimum in

jE~ d e to an increase in the e fective
scattering o e e ecf th lectrons. This increased sca-
tering, oge e, t ther with the decrease in p, ea s

In-in the electrical resistivity. n-to a maximum in
' ' ' n-

deed, if vertex corrections are neglec e, e
Kubo formula is'

v =(8~/8) J [k'A(k, Ep)]'dk

and results base ond the spectral functions shown
Fi . 2) are presented in Fig. &.3. It should be

noted that the most widely used desc 'pri tion of

transport processes in liquid and amorphous
metals is base onb d on the Faber- Ziman theory. '

~ 0

However, various au othors' have questioned this
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analysis because (1) the Faber-Ziman equations
are based on second-order perturbation theory
and (2) they require an a priori knowledge of the
Fermi wave vector kF. The results shown in Fig.
3 indicate that the present calculations yield re-
sults that are quite similar to those obtained via
the Faber-Ziman theory without invoking either
of these assumptions. Finally we note that these
results suggest that negative temperature coeffi-
cients of the electrical resistivity can be under-
stood within the present framework. Systems ex-
hibiting this effect are believed to have effective
Fermi wave vectors kF= IL~/2. In this case,
raising the temperature will lead to (1) a broader
peak in s(k), (2) a less pronounced minimum in
the density of states, and (3) a decrease in the
height of the peak in the resistivity. Here again,
the conventional analysis of this effect is based
on the Faber-Ziman theory and has recently been
questioned. "

From an experimental viewpoint, the effects de-
scribed above are primarily of interest in connec-
tion with multivalent systems. " In these systen|s
the Fermi energy may be located either within or
just above the structure-induced minimum in p(E).
For example, we note that photoemission data on
liquid Hg are consistent with a dip in p(E) just be-
low EF,"and that in liquid Cu, „Sn„alloys, the
concentration g) dependence of the magnetic sus-
ceptibility is quite nonlinear and a large diamag-
netic contribution appears at values of x for which
kF =IL~/2." In addition, a variety of multivalent
alloys (like Cu, „Sn„)are known to exhibit maxima

in their electrical resistivities and a negative
temperature coefficient of the resistivity (at
fixed x) for concentrations corresponding to kF
=K~/2." As we have seen in connection with
Fig. 3, these effects can be understood within
the muffin-tin EMA framework.

Our results are also of interest in connection
with the Nagel- Tauc" description of transition-
metal-metalloid glass formation. These glasses
tend to form over a relatively narrow range of
concentrations (typically, 20%%uo metalloid). Adopt-
ing a nearly-free-electron picture of the host
material and a rigid-band approach to the alloying
process, Nagel and Tauc argue (1) that there
should be a structure-induced minimum in p(E),
and (2) that at roughly 20/o metalloid concentration
EF should be located at the position of the mini-
mum. " If this were the case, then states whose
energy had been lowered (in forming the mini-
mum) would be occupied, while those whose ener-
gy had been raised would be unoccupied, and this
concentration would correspond to a metastable
minimum of the total energy. In a sense, this
argument is analogous to the Hume-Hothery argu-
ments on the limits of &-phase stability in noble-
metal-based substitutional alloys. " [It should al-
so be noted that Moruzzi, Oelhafen, and Williams"
have recently emphasized the relation between
a minimum in the density of states (at EF) and
glass formation in early-late transition-metal
alloys. In these systems, however, there does
not appear to be a direct relation between the mi-
nimum in p(E) and the principal peak in s(k).]
The results described in Figs. I and 2 certainly
lend support to the Nagel-Tauc picture in that a
minimum in p(E) is shown to exist in precisely
the kind of system that forms the host in their
rigid-band model. Indeed, we find that the mini-
mum in P (E) is centered at an energy that corre-
sponds to an effective valence of 11.6 (again us-
ing curve 2 of Fig. 1) which is in good agreement
with the Nagel-Tauc estimate of 11.7." Also con-
sistent with their arguments is the fact that the
minimum in p (E) becomes less pronounced as the
peak in s(k) is broadened.

The calculations described here are clearly not
specific enough to justify a serious estimate of
the electronic contribution to the free energy of a
transition-metal-metalloid glass. " A proper de-
scription of these systems requires calculations
based on two atomic potentials and three pair dis-
tribution functions. Calculations of this kind are
now feasible and our be1ief is that they will again
yield a structure-induced minimum in p(E). The
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point to be made in the present paper is that the
characteristics of such minima ean be understood
within the muffin-tin EMA framework and that
their influence should be taken into account in de-
scribing the properties of a variety of structurally
disordered metallic systems.
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