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in Quantum Liquids

J. J. Weinstein and J. W. Negele

Center for Theovetical Physics, Labovatory for Nuclear Science, Depaviment of Physics,
" Massachusetts Institute of Technology, Cambridge, Massachuseltts 02139

(Received 22 July 1982)

Scaling of the dynamic structure factor at high momentum transfer is established by
using time-ordered perturbation theory. Whereas the scaling function is the longitudinal
momentum distribution for systems interacting with smooth two-body potentials, addi-
tional terms contribute in the case of strong short-range repulsion. Illustrative results
are presented for a hard-sphere Bose gas and the relevance to electron scattering from
nuclei and neutron scattering from liquid helium is discussed.

PACS numbers: 67.40.Db, 61,12.Fy

The dynamic structure factor, S(a,w), has been
measured by electron scattering from nuclei'! and
neutron scattering from liquid helium.? In the
impulse approximation,® it is directly related to
the momentum distribution, #(p), by

15@,0)=m [ 555062 -yn(f), o)
where
y=mw/q-q/2. (2)

Because of the importance of an unambiguous ex-
perimental determination of the momentum dis-
tribution in dense quantum liquids like liquid
helium and nuclear matter, this work addresses
the general relation between S(a,w) and n(ﬁ) and
the particular features which arise for two-body
potentials having strongly repulsive cores at
short range.

The structure factor may be expressed as

S@w)=r""Im [ dre* i@, 0P(-T,00, (3)

where f)(a,t) is the Fourier transform of the
Heisenberg density operator at time {. One means
of enumerating systematic corrections to Eq. (1)
is the expansion of ﬁ(ﬁ,t)ﬁ(—a,o) as a sum of
many-body operators to be evaluated at equal
time, giving rise to sums of integrals of many-
body correlation functions.* For repulsive cores,
however, serious inconsistencies arise since in-
teractions in the time interval (0,¢) are treated
perturbatively whereas those outside this interval
are summed to all orders in the ground-state
wave function. Further assumptions to enable
evaluation of the correlation functions then yield
uncontrolled approximations.

To treat interactions inside and outside the in-
terval (0,¢) equivalently, it is useful to express
the perturbation expansion of Eq. (3) in terms of
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time-ordered diagrams.>® A selected set of low-
order diagrams is given in Fig. 1, where the low-
er dot with an incoming arrow denotes excitation
with momentum a at time 0, the upper dot with

an outgoing arrow indicates removal of momentum
?1 at time ¢, upgoing and downgoing lines indicate
particle and hole propagators, respectively, all
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FIG. 1. Time-ordered diagrams contributing to the
dynamic structure factor and momentum distribution
as defined in the text,
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distinct exchange graphs for each diagram are to
be included, and the shaded rectangles should be
temporarily regarded as two-body interactions.

For smooth potentials, having Fourier trans-
forms which decrease exponentially in ¢, it is
straightforward to demonstrate scaling in the
variable y,’ that is that the limit as ¢ - of
qS(G,w=qy/m+q*/2m) approaches a function of y.
The a dependence of each diagram is analyzed as
follows. Unless the q injected at time 0 can flow
solely through particle propagators to be re-
moved at time ¢, the diagram vanishes at least
exponentially in ¢. The q dependence of the re-
maining diagrams arises from propagators in the
interval (0,¢) which have energy denominators of
the form

E=w- 2, €+ ) e+iN=w=-€p,z+C+in
particles holes
=(g/m)ly =p+a+0(1/q))+n, (4)

where f) denotes the momentum of the particle or
hole receiving excitation ¢ at time 0 and C de-
notes all other g-independent particle and hole
energies. Diagrams having no interactions during
(0,¢), such as a, f, and k in Fig. 1, thus have a
single denominator of form (4) yielding an ima-
ginary part

(m/q)dy -p-G+0(1/q));

diagrams like b, g—j, and I-p with one interaction
are of order 1/¢®; and those with m interactions
are of order ¢"™"!. The most general contribu-
tions of order 1/q to S(g,w=qy/m+q?/2m) are of
the generic form shown in diagrams A and C at
the bottom of Fig. 1, where the shaded regions
denote arbitrary multiparticle-multihole ampli-
tudes. Comparison with the corresponding gener-
ic form for general contributions to the momen-
tum distribution B and D indicates that individual
diagrams differ only by the one-body momentum
operator, denoted by the square box, and the
factor (m/q)8(y —p-4+0(1/q)), where p is the
particle momentum in A and B and the hole mo-
mentum in C and D. Thus, in all orders of per-
turbation theory, it is observed that in the large-
q limit, ¢S(q,w =qy/m +q?/2m) approaches the
impulse-approximation result, Eq. (1), and thus
scales in y.

The g dependence described above is crucially
altered for two-body potentials with strongly re-
pulsive cores. We consider first the idealized
case of an infinitely repulsive hard core of radius
a. The total cross section approaches a constant

and hence, by the optical theorem, the imaginary
part of the forward scattering amplitude grows
linearly with ¢. In addition, off the energy shell
the real part of the forward scattering amplitude
may also be shown to have linear ¢ dependence.5'8
The perturbation series for S must be resummed
and the diagrams in Fig. 1 actually represent all
contributions of first and second order in the hole-
line expansion which are nonvanishing for q > 2k
with the shaded rectangles denoting G matrices.
Note, as remarked at the outset, that contribu-
tions inside and outside the time interval (0,¢)
are treated consistently in each order of the ex-
pansion, as for example in diagrams f—j. The q
counting of the original analysis is modified by

an additional power of g for each forward scatter-
ing of a particle line carrying g. Diagrams g and
7 each require such an additional factor ¢ and thus
contribute in leading order. Diagrams k-p are
most conveniently evaluated by using generalized
time ordering® by which it may be shown that the
sum k +I+m is of order 1/q whereas n+p is of
order 1/g®. The final result is that ¢S(g,w=qy/
m +q?/2m) scales to a function of y, but because
of nonvanishing contributions from diagrams g—j
the scaling function no longer is related to the
momentum distribution via Eq. (1). The analo-
gous result for bosons is obtained from the fer-
mion result utilizing the high-spin technique®

of defining a fictitious spin with degeneracy equal
to the particle number and projecting onto a spin
singlet which forces the spatial wave function to
be totally symmetric.

To assess the quantitative significance of the
additional terms g—j all two-hole—line contribu-
tions to the structure factor were calculated
numerically for bosons interacting through a pure
hard-core potential of radius a. The results, re-
duced to dimensionless form, are shown for
several values of momentum transfer in Fig. 2
and compared with the impulse approximation,
Eq. (1), using n(f)) calculated to the same order
in the hole-line expansion. Because random-
phase-approximation diagrams, which are cru-
cial for the low-momentum behavior of Bose sys-
tems, are omitted from the present calculation,
the results should only be considered for y > (87
xap)t’?. The essential result is that in the range
of momenta considered in Fig. 2 the impulse ap-
proximation, denoted IA, overestimates the full
result in the high-g limit, denoted g =, by from
40% to 60%. Thus, although ¢S scales and dis-
plays symmetry about y =0, properties often pre-
sented as evidence for the validity of the impulse
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FIG. 2. The structure factor §=¢S(g,w =qy/m +q%/
2m)/pma* as a function of § =ya. The momentum trans-
fer is specified by §=ga and IA denotes the impulse ap-
proximation using Eq. (1).

approximation, extraction of a momentum distri-
bution from it via Eq. (1) would lead to error of
the order of 50%.

Finally, it is desirable to comment on the rele-
vance of the hard-core results to liquid helium
and nuclei. At scattering energies corresponding
to the range of momentum transfer for which scal-
ing analyses are performed, helium-helium and
nucleus-nucleus total cross sections are roughly
constant, implying that the imaginary part of the
forward scattering amplitude must grow roughly
linearly with ¢. Phenomenological potentials,
such as the Lennard-Jones'® and Reid'! potentials,
reflect this same behavior in their strongly re-
pulsive cores. Thus, in the relevant momentum
transfer region, diagrams g—j should be qualita-
tively as important as for the hard-core case and
produce quantitatively significant deviations from
the impulse approximation. These deviations are
particularly pertinent to the recent effort to de-
termine the momentum distribution of liquid *He
by assuming the validity of the impulse approxi-
mation for neutron scattering.'? Because of the
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limitation to y > (87ap)'/2, the present calculation
unfortunately is not directly applicable to the in-
teresting problem of determining the zero-mo-
mentum condensate fraction.

In the case of liquid helium, neutron scattering
experiments extend up to §=qa~45. In the cal-
culations in Fig. 2 the scaling limit has essential-
ly been reached at §=45, with results at 7=30
differing negligibly on the scale of the figure.
Even the lower-momentum-transfer data of Ref.
12 correspond to ¢ ~15, which is reasonably close
to the scaling domain. In contrast, electron scat-
tering experiments from nuclei extend only to ¢
~3 which is far from converging to the scaling
limit. Note, however, that because of oscillating
exchange terms, there is misleading apparent
convergence for positive y near ¢=3, at which
point ¢S stops increasing and begins decreasing
toward the § ~«~ limit.

For liquid “He Monte Carlo techniques for bo-
sons have been used to evaluate the momentum
distribution'® and can be used to calculate Euclid-
ean correlation functions for density operators
p(a) acting at two different imaginary times. If
practical methods can be developed to continue
stochastically evaluated Euclidean correlation
functions to real time, an exact calculation of the
dynamic structure function can be compared with
the impulse approximation for a realistic poten-
tial, eliminating the restrictions of the present
calculation to two-hole-line contributions and
hard cores. In the case of electron scattering,
the complications of the full two-body interaction,
Fermi statistics, relativistic corrections, and
spin and current contributions to scattering ren-
der quantitative calculations impractical, but the
present analysis suggests that extraction of the
momentum distribution from ¢S will be compli-

cated by short-range repulsive interactions to at
least the same extent as in liquid helium.
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In contrast to the usual structural “lock-in” incommensurate-commensurate transi-
tions—where the amplitude of the modulation wave continues to increase at T, but the
incommensurate part of the average wave vector of the modulation wave vanishes—in
(C3H;NH;),MnCl, the amplitude of the incommensurate modulation wave vanishes outside
T.yand T, whereas the wave vector is not critical. This reentrant behavior results
from a coupling of the incommensurate order parameter to the temperature-dependent

interlayer distance.

PACS numbers: 64.60.~i

The phase-transition sequence commonly ob-
served! in structurally incommensurate systems
is as follows: high-temperature disordered
phase (P)—incommensurately modulated ordered
phase (I »—commensurate ordered phase (C).

The P-I transition is the result of a condensation
of a soft mode with a wave vector which is incom-
mensurate to the periodicity of the underlying
lattice, whereas at the I -C transition the frozen-
out modulation wave becomes commensurate,

i.e., the average wave vector “locks in” to the
basic lattice. Here we report on a thermal dila-
tation-induced incommensurate-reentrant high-
symmetry phase transition in normal and partially
deuterated (C,H,NH,),MnCl, (abbreviated as
C3Mn) where the amplitude of the modulation
wave and nof the incommensurate part of the
average wave vector vanishes (Fig. 1) with lower-
ing temperature. This phenomenon has so far

not been observed in other incommensurate sys-
tems.

C3Mn is a pseudo-two-dimensional perovskite
where layers of corner-sharing MnCl, "~ octahedra
are sandwiched between rigid—but dynamically
disordered—propylammonium chains.?® In the
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high-temperature o phase (space group /4/mmm)
the propylammonium groups are reorienting
around their long axes between four equivalent
orientations. In the partially ordered 8 phase the
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FIG. 1. Schematic temperature dependence of the
amplitude (1) and the average incommensurate wave
vector (k-k,) in (a) C3Mn and (b) a “normal’ incom-
mensurate system in the P, I, and C phases.
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