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Determination of the Momentum Distribution from the Dynamic Structure Factor
in Quantum Liquids
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Scaling of the dynamic structure factor at high momentum transfer is established by

using time-ordered perturbation theory. Whereas the scaling function is the longitudinal
momentum distribution for systems interacting with smooth two-body potentials, addi-
tional terms contribute in the case of strong short-range repulsion. Illustrative results
are presented for a hard-sphere Bose gas and the relevance to electron scattering from
nuclei and neutron scattering from liquid helium is discussed.

PA CS numbers: 67.40.Db, 61.12.Fy

The dynamic structure factor, S(q, u&), has been
measured by electron scattering from nucl. ei' and
neutron scattering from liquid helium. ' In the
impulse approximation, ' it is directly related to
the momentum distribution, n(p), by

time-ordered diagrams. " A sel.ected set of low-
order diagrams is given in Fig. 1, where the low-
er dot with an incoming arrow denotes excitation
with momentum q at time 0, the upper dot with
an outgoing arrow indicates removal of momentum

q at time t, upgoing and downgoing lines indicate
particle and hole propagators, respectively, all

where

y —= me/q —q/2.

Because of the importance of an unambiguous ex-
perimental determination of the momentum dis-
tribution in dense quantum l.iquids like liquid
helium and nuclear matter, this work addresses
the general relation between S(q, e) and n(p) and

the particular features which arise for two-body
potentials having strongly repulsive cores at
short range.

The structure factor may be expressed as

S(q, to)=tr 'Im f dte' ' t'(p(q, t)p(-q, O)), (3)

where p(q, t) is the Fourier transform of the
Heisenberg density operator at time t. One means
of enumerating systematic corrections to Eq. (1)
is the expansion of p(q, t)p(-q, O) as a sum of
many-body operators to be evaluated at equal
time, giving rise to sums of integral. s of many-
body correlation functions. ' For repulsive cores,
however, serious inconsistencies arise since in-
teractions in the time interval (O, t) are treated
perturbatively whereas those outside this interval.
are summed to all orders in the ground-state
wave function. Further assumptions to enable
evaluation of the correlation functions then yield
uncontrolled approximations.

To treat interactions inside and outside the in-
terval (O, t) equivalently, it is useful to express
the perturbation expansion of Eq. (3) in terms of
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FIG. 1. Time-ordered diagrams contributing to the
dynamic structure factor and momentum distribution
as defined in the text.
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distinct exchange graphs for each diagram are to
be included, and the shaded rectangles should be
temporarily regarded as two-body interactions.

For smooth potentials, having Fourier trans-
forms which decrease exponentially in q, it is
straightforward to demonstrate scaling in the
variable y,' that is that the limit as q-~ of

qS(q, cu=qy/m+q'/2m) approaches a function of y.
The q dependence of each diagram is analyzed as
follows. Unless the q injected at time 0 can flow
solely through particle propagators to be re-
moved at time t, the diagram vanishes at least
exponentially in q. The q dependence of the re-
maining diagrams arises from propagators in the
interval (O, t) which have energy denominators of
the form

E =&8 — Q e+ Q E+lq=R —e- +C+ jqp+g
particl es holes

= (q/m)[y —p q+O(1/q)]+i'q, (4)

where p denotes the momentum of the particle or
hol. e receiving excitation q at time 0 and C de-
notes all other q-independent particle and hole
energies. Diagrams having no interactions during
(O, t), such as a, f, and k in Fig. 1, thus have a
single denominator of form (4) yielding an ima-
ginary part

(m/q)5(y —p q+0(l/q));

diagrams like b, g-j, and l-p with one interaction
are of order 1/q'; and those with m interactions
are of order q™1.The most general contribu-
tions of order 1/q to S(q, &u=qy/m+q'/2m) are of
the generic form shown in diagrams A and C at
the bottom of Fig. 1, where the shaded regions
denote arbitrary multiparticle-multihole ampli-
tudes. Comparison with the corresponding gener-
ic form for general contributions to the momen-
tum distribution 8 and D indicates that individual
diagrams differ only by the one-body momentum

operator, denoted by the square box, and the
factor (m/q)5(y —p q+O(1/q)), where p is the

particle momentum in' and 8 and the hole mo-
mentum in C and D. Thus, in all orders of per-
turbation theory, it is observed that in the large-
q limit, qS(q, u =qy/m+q'/2m) approaches the
impulse-approximation result, Eq. (1), and thus

scales in y.
The q dependence described above is crucially

altered for two-body potentials with strongly re-
pulsive cores. We consider first the idealized
case of an infinitely repulsive hard core of radius
a. The total cross section approaches a constant

and hence, by the optical theorem, the imaginary
part of the forward scattering amplitude grows
linearly with q. In addition, off the energy shell
the real part of the forward scattering amplitude
may also be shown to have linear q dependence. "
The perturbation series for S must be resummed
and the diagrams in Fig. 1 actually represent all
contributions of first and second order in the hole-
line expansion which are nonvanishing for q )2k F

with the shaded rectangles denoting G matrices.
Note, as remarked at the outset, that contribu-
tions inside and outside the time interval (O, t)
are treated consistently in each order of the ex-
pansion, as for example in diagrams f j T-he. q
counting of the original analysis is modified by
an additional power of q for each forward scatter-
ing of a particle line carrying q. Diagrams g and

j each require such an additional factor q and thus
contribute in leading order. Diagrams k-p are
most conveniently evaluated by using generalized
time ordering' by which it may be shown that the
sum k+7+m is of order 1/q whereas n+p is of
order 1/q'. The final result is that qS(q, & = qy/
m+q2/2m) scales to a function of y, but because
of nonvanishing contributions from diagrams g-j
the scaling function no longer is related to the
momentum distribution via Eq. (1). The analo-
gous result for bosons is obtained from the fer-
mion result util. izing the high-spin technique
of defining a fictitious spin with degeneracy equal
to the particle number and projecting onto a spin
singlet which forces the spatial wave function to
be totally symmetric.

To assess the quantitative significance of the
additional terms g-j all. two-hole-line contribu-
tions to the structure factor were ca1.culated
numerically for bosons interacting through a pure
hard-core potential of radius a. The results, re-
duced to dimensionl. ess form, are shown for
several values of momentum transfer in Fig. 2

and compared with the impulse approximation,
Eq. (1), using n(p) calculated to the same order
in the hole-line expansion. Because random-
phase-approximation diagrams, which are cru-
cial. for the low-momentum behavior of Bose sys-
tems, are omitted from the present calculation,
the results should only be considered for y ) (8n
&&ap)' '. The essential result is that in the range
of momenta considered in Fig. 2 the impulse ap-
proximation, denoted IA, overestimates the full
result in the high-q limit, denoted q =~, by from
40'%%u& to 60%. Thus, although qS scales and dis-
plays symmetry about y =0, properties often pre-
sented as evidence for the validity of the impulse
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In contrast to the usual structural "lock-in" incommensurate-commensurate transi-
tions —where the amplitude of the modulation wave continues to increase at T but the
incommensurate part of the average wave vector of the modulation wave vanishes —in
(CSH)NH3) 2MnC14 the amplitude of the incommensurate modulation wave vanishes outside
T

&
and 7, 2 whereas the wave vector is not critical. This reentrant behavior results

from a coupling of the incommensurate order parameter to the temperature-dependent
inte rlayer distance.

PA CS numbers: 64.60,-i

The phase-transition sequence commonly ob-
served' in structurally incommensurate systems
is as follows: high-temperature disordered
phase (P'& incommensurately modulated ordered
phase (I) "ommensurate ordered phase (C).
The P-I transition is the result of a condensation
of a soft mode with a wave vector which is incom-
mensurate to the periodicity of the underlying
lattice, whereas at the I-C transition the frozen-
out modulation wave becomes commensurate,
i.e., the average wave vector "locks in" to the
basic lattice. Here we report on a thermal dila-
tation-induced incommensurate-reentrant high-
symmetry phase transition in normal and partially
deuterated (C,H, NH, ),MnCl, (abbreviated as
CSMn) where the amPlitude of the modulation
wave and not the incommensurate part of the
average wave vector vanishes (Fig. I) with lower-
ing temperature. This phenomenon has so far
not been observed in other incommensurate sys-
tems.

C3Mn is a pseudo-two-dimensional perovskite
where layers of corner-sharing Mncl, octahedra
are sandwiched between rigid —but dynamically
disordered —propylammonium chains. ' ' In the

Tc
(a)

TI T

Tc (b) TI T

FIG. 1. Schematic temperature dependence of the
amplitude (q) and the average incommensurate wave
vector (k-k, ) in (a) CBMn and (b) a "normal" incom-
mensurate system in the P, I, and C phases.

high-temperature ct phase (space group I4/mmm)
the propylammonium groups are reorienting
around their long axes between four equivalent
orientations. In the partially ordered P phase the
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