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Three-dimensional Yang-Mills and gravity theories augmented by gauge-invariant mass
terms are analyzed. These topologically nontrivial additions profoundly alter the particle
content of the models and lead to quantization of a dimensionless mass —coupling-constant
ratio. The vector fieM excitations become massive, with spin 1 (rather than massless
with spin 0), and the mass provides an infrared cutoff. The gravitation acquires mass,
mediates finite-ra~~e interactions, and has spin 2 (rather than being absent altogether);
although its mass term is of third derivative order, there are no ghosts or acausalities.

PACS numbers: 11.15.-z, 04.60.+n, 11.10.6h

The topology of odd-dimensional spaces permits the construction of gauge theories with novel and at-
tractive properties. We treat here the non-Abelian vector and tensor models in three space-time di-
mensions. "' In both, a topological structure, the Chem-Simons secondary characteristic, ' augments
the usual action. These gauge-invariant terms dramatically affect the nature of the field excitations,
changing their spin and endowing them with a mass. For the (superrenormalizable) vector model, the
spin changes from 0 to 1 and the mass parameter provides a perturbative infrared cutoff. In the gravi-
tational case, the dynamically trivial Einstein action becomes that of a finite-range spin-2 field; de-
spite the third derivative order of the mass term, there are neither ghosts nor acausalities. The
non-Abelian mass term also has nontrivial homotopy properties, which lead to quantization of a dimen-
sionless combination of mass and coupling constant.

The vector field action is

I„=I„M+I„c,=(g '/2) fd'x-trI 8I" —(kg '/2) fd'xe 8Itr[E„8A -asA A8A~]

in the usual matrix notation for the internal indices. The gravity action reads

Ia =IE+Ioc,s =x 'fd'x g' 'R —(4y, x') 'Jd'xe (Ras„(uy' +, (u„„(us"(uy, ').

(l.a)

(lb)

Note the sign of the Einstein term, which is opposite to that in four-dimensional gravity. The coupling
constants (g,tc) have dimension (mass)'~', and p is the mass parameter; our signature is (+ ——). In
(lb), &u„„=—&u „~, are the drei bein affinitieS and R „8,~ =—Saris„+ &ma „&us', —(p a) iS the CurVature ten-
sor. For simplicity, we deal with the source-free case; matter coupling may be included in the stan-
dard way, and its effects will be noted. The (P- and T-nonconserving) mass terms are the Chern-
Simons expressions. They are closely related to the well-known four-dimensional (ct =0,1,2,3) Pontry-
agin densities X", defined by

s =t +s'"'z =s xv r as 2 X(y y

P -=t *It. R "-=8 X " *R 8 -=~a 'Rg r ab a8 e c ab 2 A, aab '

(2a)

(2b)

The integrals of the a =3 components, X', of the X over the three-dimensional subspace excluding
x', and with x' dependence suppressed, are (up to constants) just our Ics.

The source-free equations which follow from (1) are

and

D Z '+ p +Z'=0, +S'=-~e" +p,.
gn8+ + zCns 0 ga8 —R&8 ~ ga8R C&8 =g ~i2ea~oD (R 8 Ad 8R)

(Sa)

(3b)
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Despite the hei bein dependence of I&cs, its variation is of purely metric nature, like that of the Ein-
stein action; hence the metric form of (Sb). We have made use here of the equivalence between Bie-
mann and Ricci tensors in three dimensions, which also implies that flat space is the only solution of
pure Einstein theory. Each term in (S) separately satsifies a covariant conservation identity. In three
dimensions, C"" is the conformal tensor replacing the normal Weyl tensor, which vanishes identical-
ly; the density g'"C„" is invariant under conformal transformations of the metric I.n addition to
being conserved, C"' is symmetric by virtue of the usual Bianchi identity and manifestly traceless;
the scalar curvature R therefore vanishes in the absence of sources.

To demonstrate the massive nature of the excitations, the dual of the vector equation (Sa),

0"8(p,)+Fs-=(pg +e" ~D~) *E8 =0,

and the gravitational ones,

may be iterated with 0(- p) to yield

(g&D + p2) g~& g&8)'[ g~ gy ]
and, using the R=O property,

(0 6„+p )RBy = SRs~R~y-gsg~pR "~.

(4a)

(4b)

(5a)

(5b)

In linearized approximation, which governs the kinematics of our theories, the right-hand sides are
absent and we see that, whatever their number or spin, all particles are massive, with causal rather
than tachyonic propagation. The latter fact is not controllable since the action depends on LL(, rather
than g, but may be understood in terms of the a priori positivity of the energy, and Bel-Robinson
superenergy, densities of the theories. '

The nature of the excitations only becomes manifest by, more detailed analysis. The linearized ac-
tions are first expressed in terms of the Abelian gauge-invariant components of the fields. For the
linearized Yang-Mills theory [ equal to the topologically massive Maxwell multiplet], these are the
transverse components of the spatial vector potentials, Ar'=e'~~, p, with 8~ -=8~ (- &') "', and the
longitudinal electric fields. The resulting constraint-free action is of Klein-Gordon form for p; it
describes one degree of freedom per color. For linearized gravity, we use the following three gauge-
invariant components of a» = ~ '(g» —rj»):

A A h A

q =a" ~8,8,.a', y=v a~+ 28,a ' 8,8&a„— aq, . —~=a' (aja —s,. e,a ').
In terms of these, the linearized action reads

I~~== T fd'x[(q Clp+o'+xy)+p 'ao]. (6)

Note that all triple time derivatives are safely hidden in the linearized Weyl-invariant Lagrange multi-
plier and constrained fields (A, , o) and that the Einstein (or topological) term alone is clearly vacuous.
Elimination of A immediately leads to the unconstrained form

Igg=- yfd x p( +p )p (7)

which is identical to the vector action, although the respective p variables have different Lorentz trans-
formation properties. Note that p is essentially the conformal part of the metric, which appears with
ghost sign in the conventional Einstein action. Accordingly, the overall sign of (7) is the physical one
because the sign of the Einstein term in (1b) is opposite to that required in four dimensions.

Calculation of the linearized Poincard generators shows further that, despite the scalar form (7) of
the action, the vector theory s particle has spin &1, while the graviton has spin & 2. The spin sign is
correlated to that of p, in the action. ' [In three dimensions spin is a rotational pseudoscalar and can
have either sign. The value of the spin only emerges from study of the full SO(2, 1) generators, and it
is determined by the (invisible) temporal indices of the field variables. ] As was already apparent from
its topological origins or from the epsilon tensor, a single spin value reflects T and P nonconservation.
[These discrete symmetries may be restored by considering a doublet of models and opposite mass
terms. ) Our excitation spectra differ discontinuously both from the massless ones in which the vector
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particle is spinless and the graviton is absent altogether, and from those of the traditional gauge-non-
eovariant massive models, which have two degrees of freedom for either case.

The topological terms in the Lagrangians change by the total divergences under gauge transforma-
tions; in the vector case, it is known that l„cs change by the winding number' Mt (U) under "large" gauge
transf ormations U:

A~ -U A~ U+U BpU,

Ives Iv-cs+8~ PZ ~(U)

w(U)
—= (24m') 'fd're" &tr[ &„U(U '&sU)(U '&~U)

Therefore exp(iIvc, ) is gauge invariant only if the
quantization condition

holds. Otherwise, the expectation value of a
gauge-invariant operator 0 would be undefined,
as can be seen from the functional integral repre-
sentation (0) =& ' fnA 0 exp(iI v), with a gauge-
invariant measure S4 and normalization Z. Un-
der a change of variables A-A", where A" is a
(large) gauge of transform of A, (0) would change
by the phase implied by (8), which would only be
unity if (9) held. ' The same result emerges in a
Euclidean formulation since I~cs is independent
of the metric's signature, but depends only on
the nature of the maximal compact subgroup of
the internal gauge group. The gravitational ac-
tion's change under large local Lorentz trans-
formations is formally identical, but as this "in-
ternal" group, SO(2, 1), has the trivial compact
subgroup SO(2) we cannot draw the same conclu-
sion for p K in Minkowski signature. That is per-
haps fortunate since that quantity may have to be
infinitely renormalized in the quantum theory.

Quantization of the models is straightforward.
For the vector theory, already superrenormaliza-
ble when p =0, the mass term acts as an infrared
cutoff, since the propagator behaves as (p'
+pp) '. This gain of one power of momentum
should suffice to cut off the low frequencies at
each loop order. Explicit loop calculations of both
Abelian and non-Abelian vector models coupled to
fermions have been performed; although every-
thing is finite, some of the finite results are
actually regularization dependent. '

In gravity, there is a dramatic improvement in
the ultraviolet behavior of the eonformal sector of
the theory, where the propagator now decays as

The model would be manifestly power-count-
ing renormalizable [with &2'. as effective coupling
constant] were it not for the scale factor, i.e.,
the part pg 8 of h„s in the linearized approxima-
tion. This mode retains the conventional P prop-
agation because the conformally invariant topolog-

U-1]

(8)

~ ical part does not affect it.' There is a close
parallel with four-dimensional theory when the
eonformal term -R»' —~R' is added to the Ein-
stein action. ' However, in four dimensions,
ghosts are also introduced in the process. In
either dimension, conformal invariance is remov-
able by further addition of a term -R', but it is
nonunitary.

It appears likely that supergravity ean be con-
structed. When we adjoin to the (P- and T-invari-
ant) Barita-Schwinger action &i fr &$ „88$& d'x
(which, like the Einstein action, is trivial by it-
self), the supersymmetric companion of X&' de-
rived from that of *RR yields an action for a
propagating massive spin- ~ fermion. Existence
of supergravity would also provide a simple proof
of energy positivity of our full nonlinear gravity
model. "

The external-source problem has also been
analyzed. For gravity, the short-range behavior
is exhibited by the effective Yukawa attraction,
H;, , ——fT„(-&'+p') 'T„of weak static T„
sources. This contrasts with the interactions
mediated by Einstein gravity (the p —~ limit of
our theory). There, the linearized propagator
leads to a coupling - fdpp '[T „"(p)T„'(-p)
—T „"(p)T, "(-p)]. Consequently, there is no
T"-T"term at all there, and the entire interac-
tion is purely contact, since the p

' pole is can-
celed by the momenta implicit in T"" to ensure
its conservation. Nevertheless the Newtonian
component of the metric, defined as usual from
the linearized part of G", still behaves asymptot-
ically as V 'T", and the total energy is expressed
by the same flux integral at spatial infinity a,s in
ordinary gravity. The vector theory also implies
short-range source interactions, but differs from
the massless case in that the longitudinal electric
field becomes short range and the total charge is
read off asymptotically from the magnetic poten-
tial. [In both cases, it is the lowest derivative
term in the constraint equations which carries
the asymptotic information about the "charges. "]
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A number of questions are raised by these re-
sults. First, it would be of interest to study in
more detail the infrared properties of the vector
model to verify that the mass provides a cutoff
beyond one loop. Second, investigation of the
ultraviolet behavior of gravity 2nd supergravity
should reveal the extent of the improvement due
to the conformal sector's asymptotics. This
could also be done by determining the form of the
(space-nonlocal) self-interaction V(C') in the full
nonlinear action, ls= —~Jdx[@'( +u')4'+V(@)], ex-
pressed in terms of the single dynamical variable
4'.

The most relevant problem is clearly the rela-
tion of these models to four-dimensional theory.
Although the normal terms (taken in Euclidean
signature) can be considered as high-temperature
limits, "or dimensional reductions of the latter,
the topological terms have a different origin, in
the 0 vacuum of the four-dimensional physics. "
However, since ~ terms are generally present in
four dimensions, naturalness suggests that the
corresponding topological terms be included in
the high-temperature limit.

Similar topologically augmented models could
also be introduced in other odd-dimensional sys-
tems. However, as is clear from their origin,
the topological parts will be of higher derivative
order and powers of the fields, unless expressed
in terms of higher rank gauge fields. Such vari-
ables and terms have arisen naturally in higher-
dimensional supergravity and may perhaps pro-
vide a way of introducing mass without Higgs
scalar s.

Details of this work will be reported elsewhere. '
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