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Grain-Boundary Theory of Melting in Two Dimensions
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A quantitative theory of melting in two dimensions via the spontaneous generation of
grain boundaries is presented. It is found that as the temperature is increased, grain
boundaries are generated before the dislocations unbind. Also discussed are (a) the
nature of the transition, (b) the coupling of the grain boundaries to a density change,
(c) the existence of a hexatic phase, and (d) comparisions with recent computer simula-
tions.
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Melting in two dimensions has been a subject of
interest recently. Many computer simulations'
have been done, but the results do not fit well
with the calculations using the dislocation unbind-

ing mechanism (DUM) by Kosterlitz and Thouless'
and by Halperin and Nelson. ' All computer simu-
lations show a dramatic increase in the total
number of dislocations as the system goes into
the liquid phase, whereas the DUM predicts no

change in the total number of dislocations. Also,
the DVM predicts a gradual increase in the sepa-
ration of some of the dislocation pairs, but this
is not seen. Some computer simulations indicate
a first-order phase transition, whereas the DUM

produces a continuous phase transition. An alter-
native mechanism of melting via the spontaneous
generation of grain boundaries was discussed
thirty years ago, ' but no detailed calculation was
carried out. Recently Fisher, Halperin, and
Morf' pointed out that the free energy required
to generate a single small-angle grain boundary
goes to zero at the temperature T, where the dis-
locations unbind. I have studied the statistical
mechanics of a collection of grain boundaries on
a hexagonal lattice and find the following features:
(a) Grain boundaries are generated before T, is
reached as the temperature is increased. (b) When

the grain boundary is coupled to a finite density
change a. first-order transition always results.
Without such coupling, a first-order transition
results if the core energy is small enough. (c) A

hexatic phase may exist if the temperature is
less than the Kosterlitz- Thouless temperature.
Since a grain boundary consists of an array of
dislocations, ' spontaneous generation of grain
boundaries implies a dramatic increase in the
total number of dislocations, a result more con-
sistent with computer simulations.

Since a grain boundary consists of an array of
dislocations, what then is the difference between

the present mechanism and the DUM'P Disloca-
tions with Burgers vectors b, b' interact with
each other with a potential that consists of a loga-
rithmic term as well as a dipolar term, viz.E,- -, ,

- -, b (F-i')b'(f-r'))V=-—ln~r -r'Ib b'—
Ir -r'I'

E here is a function of the elastic constants. For
a finite number of dislocations, the first term
always dominates the second term at a large
enough distance. Hence in the DUM, the second
term plays a much less significant role compared
with the first term; the question of interest is
whether the dislocations unbind.

For the grain boundary, a correlation among
the Burgers vectors of an infinite array of dis-
locations is built in. The effective potential be-
tween grain boundaries a distance z apart be-
comes short ranged and one ends up with a po-
tential of the form'

L E
U(z, K) = ——ln sinh&-

s 4r s

&8, z s——coth& —+ ln-
s s

Here s is the separation between dislocations
on a grain boundary in the unit of the lattice con-
stant. The question of interest here is whether
grain boundaries are generated. Note that z -1.
When z =0, the grain boundaries annihilate each
other. This can be represented by a hard-core
potential at z = 1.

Because the cancellation between the logarith-
mic and the dipolar term is complete only for
infinitely long grain boundaries, finite grain-
boundary loops are neglected in the present cal-
culation. I shall focus my attention only on hexa-
gonal lattices here. The grain boundaries can
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then have only three orientations. I have con-
sidered three different configurations of grain
boundaries illustrated in Fig. 1 and have found
that Fig. 1(b) is most favorable. Let me explain
briefly why this is so.

The energy of configuration l(c) was computed
using a Fourier series in a manner very similar
to that used in electrostatics calculations. For
the pair &&CD &z&yC ]D]~ ~ ~, bec ause of a
modulation of period l, there is now an incom-
plete cancellation of the logarithmic and the
dipolar term at a length scale of the order of l.
Because of this, ' it was found that this configura-
tion contributes a term of the order of 1/n to the
free energy. In the small-n expansion, this is
very unfavorable and hence is discarded. Con-
figuration 1(b) is found to be more favorable than
configuration l(a) because of a negative grain-
boundary crossing energy which I shall explain
in a moment.

I have calculated the free energy I" of Fig. 1(b)
in terms of the density n (of one orientation but
including the two directions of the Burgers vector)
as

E = -A(T —T')n+ Bn'+ Cn'+ O(n') .

(a)

(b)

+~s+c+(

)4y

These coefficients are given later. The term
linear in n comes from consideration of noninter-
acting grain boundaries. The n' term comes
from a grain-boundary crossing energy. The n'
term comes from a strain-energy correction to
the n' term.

To treat the thermal fluctuation of small devia-
tions of the grain boundaries from their equilib-
rium positions, one needs the energy of distor-
tion ~.

From Eq. (1), one gets

Here r=b'K/8s. br, , is the Fourier transform
of the displacement of the ith boundary from its
equilibrium position. A is significant only if the
grain boundaries are close together. For two
grain boundaries at a distance z from each other,
b, = (b'K~/4s') csch'vz/s for longitudinal modes.
For transverse modes, one has to use the short-
range potential (2). When the grain boundaries
are far apart so that 4 is negligible one gets the
free energy G, of noninteracting grain boundaries,
V1Z.

6, =—-3T(n/s)[lns+(1+lnT/»T, j,
To =K/16m .

When the grain boundaries are close together,

(c)

A)

this free energy is lost.
Because of the thermal fluctuation, two grain

boundaries can come close together at certain
places. Whenever this happens because of the
hard-core repulsion between parallel grain
boundaries, some entropy is lost. If the elastic
energy F were proportional to q' then this "en-
tanglement" energy is of the order of n'. ' Now
the grain boundary is stiffer so that the chances
of entanglement and hence the loss in entropy is
reduced. Estimates indicate that it is of the
order of n exp(-const/Tn'). For small n this
term is much smaller than the terms in Eq. (3).
Hence it is neglected.

The grain-boundary crossing energy comes
about in the following manner. Dislocations in-
side a grain boundary can move. When two grain
boundaries cross their dislocations stay closer
together (further apart) if they attract (repel)
each other. Even though a single grain boundary

FIG. 1. Three possible configurations of grain bound-
aries that have been investigated in this paper.
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crosses equal numbers of dislocations of opposite
Burgers vectors, because of the special correla-
tion mentioned there is a net energy gained.
Carrying out the calculation, we get a contribu-
tion 6, to the free energy of the form

G, = ——,
' T(n/s) in&/Py —n'T, e(s) (1 —2sn/&),

e(s) = ln(0. 5s+0.27) +ln(0. 27) —1/2v. (6)

Note that for large s, e(s) -lns.
Dislocations inside a grain boundary are coup-

led to each other elastically. Such couplings
provide for the factor -1/2& in e(s).

Collecting all the terms, we arrive at the fol-
lowing expression for the parameters in Etl. (3):

A=61ns/s, T'= T, +(E, +0.83T,)/21ns,

B= -Te(s),
C = 2~(s)/~.

In the limit of large s, the free energy is of
the form

E=nf(ns) lns/s.

(7)

(8)

The negative n' term in (3) only predicts that ns
assumes a finite value at the phase transition but
it does not predict that n alone goes through a
discontinuous change. This "degeneracy" is
broken only when coupling of grain boundaries
to other degrees of freedom such as a finite den-
sity change or to bound dislocation pairs is con-
sidered. The details of this shall be relegated to
a longer publication.

Let us next turn our attention to the so-called
hexatic phase. In order for the hexatic phase to
exist, it is necessary to have power-law correla-
tion or some other long-range correlation for the
bond orientational order parameter e" . The
orientation of a crystal changes as one goes from
one side of a grain boundary to another. The di-
rection of rotation is related to the "sign" of the
Burgers vector of the grain boundary. It is ob-
vious that the mean square fluctuation of -0 is
proportional to the mean square fluctuation of
the net sum of the Burgers vectors of the grain
boundaries. If the grain boundaries with opposite
Burgers vectors form bound states, then there
is long-range correlation in 0. This is because
if one crosses a grain boundary and the orienta-
tion of the crystal is rotated, one always en-
counters a grain boundary with opposite Burgers
vectors and the orientation is restored. If bound
states are not formed then ([ e(0) —&(R)]')~&
and (e" ( &") (') j)~e ~" where o, is some con-
stant of proportionality. When parts of two grain

boundaries are close they lose some entropy 4F.
The losses for the transverse and the longitudinal
modes are calculated separately. For the longi-
tudinal modes 6 in Etl. (4) is now finite. The re-
sultant effective potential is the difference be-
tween Etl. (2) and the loss in entropy due to the
gap. For small z, it is U, fg =(4TO —2T)lnns/s
+0.466 To. For z &s/&, U, ff approaches zero
exponentially fast. Using U, ~~, one can calcu-
late the net gain in free energy for any part of
the grain boundaries that are closer than s/v.
This turned out to be -(4T, —4T )ins+3. 6T,.
Hence for lns -0.9/(T, —T) no bound state can
form.

In this Letter I have demonstrated that the
grain-boundary mechanism (GBM) is more favor-
able than the DUM. The GBM also fits in better
with computer-simulation results in that a dramat-
ic increase in the total number of dislocations is
predicted. 1 have not considered the possibility
of grain-boundary loops here. I have not con-
sidered the interaction of grain boundaries with
other point defects such as interstitials or va-
cancies. Nor can I rule out other possible mech-
anisms. There are certain predictions of the
present theory which one should be able to com-
pare with computer simulations. These include
the dependence of the melting temperature on
the core energy E„as well as the coupling to
the elastic strain.
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