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Single-Particle Spectrum and Specific Heat of Liquitl 3He
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The behavior of the specific heat of liquid He, over a wide range of temperature, in-
dicates a wiggle in the single-(quasi)particle spectrum e(k) at &F. This wiggle corre-
sponds to the enhancement of the effective mass m*(4) at O'F of current interest in nuclear
physics. It can be quantitatively understood from the microscopic Hamiltonian within
correlated-basis perturbation theory.

PACS numbers: 67.50.Dg

The specific heat of liquid 'He in the millikelvin
region has been mostly discussed from the point
of view of low-temperature expansions. The older
work has been reviewed by Baym and Pethick, '
and a new discussion of this region, which is very
closely related to the present work, may be found
in a recent paper by Brown, Pethick, and Zaring-
halam. '

Here we study the specific heat of liquid 'He at
equilibrium density over a much wider tempera-
ture region up to 2 K. The main feature of the
measured specific heat, shown by curve C„,(T)
in Fig. 1, is a sharp bend at -0.2 K. We propose
that this feature is due to a wiggle in the single-
(quasi)particle spectrum e(k) at k F, as shown by

curve e, (k) in Fig. 2.
The effective mass m*(k) is given by the slope

of e(k):

m+(k) = n'k/[de(k)/dk],

and the wiggle in e(k) at k F implies a large en-
hancement of rn* in a narrow region around kF.
Such an enhancement of m* at k ~ was first no-
ticed by Brown, Gunn, and Gould in nuclei. It
has been discussed in the framework of Brueck-
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FIG. 1. The specific heat at constant volume. The
curves , i, ~„„,and C„, give results of first-order,
variational, and schematic calculations, while C„,
gives the experimental results. C„,= C„, and C„„
=C„~ at small te'mperatures.

FIG. 2. The single-particle spectrum e (0) . The
curves ei and e, give results of first-order and sche-
matic calculations, while points eKs show the results
of Krotscheck and Smith.
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ner's theory by Jeukenne, Lejeune, and Mahaux. 4

However, the effect appears to be much more pro-
nounced in liquid 'He than in nuclear matter.

Our approach is microscopic; it uses the bare
Lennard- Jones (6, 12) Hamiltonian, and the formal-
ism of correlated-basis perturbation theory
(CBPT). This theory, developed originally by
Feenberg and collaborators, ' is based on the ob-
servation that a fairly good description of the
ground-state energy and distribution functions
can be obtained with variational wave functions
84„where 8 is a correlation operator and 40 the
noninteracting ground state. A correlated basis
4,. is defined as 94,, where 4,. are noninteracting
gas states. If 9 is not unitary, as is the case in
practice, 4, have to be orthogonalized. When 4,
gives a good description of the ground state we
can expect the 4, to be close to the eigenstates
of the liquid, so that perturbation theory con-
verges in this basis.

CBPT has been recently used, with some suc-

cess, to study the single-particle states of nu-
clear matter. The first-order spectrum' e, (k) is
given by the energy differences (E&ih) —(E ),
where (E~ i h) are expectation values with wave
functions '8@'p/h- The 4pih are states with one
particle/hole excitation. The imaginary part
W(k) of the single-particle energy, ' as well as
corrections' to e(k), have been calculated in
second-order CBPT. Results of pedagogical
models have been reported by Krotscheck, Smith,
and Jackson. ' The experimental data' indicate
the presence of a small wiggle in e(k) at k F; the
theoretical e,(k) does not have any structure at
k F; however, the second-order effects tend to
produce it.

The e,(k) obtained for liquid 'He at p=0.277
atom/o' (o= 2.556 A) is shown in Fig. 2. Et is cal-
culated by methods given in Ref. 6, and chain sum-
mation methods" are used to calculate (E ih) and

p h

(E,). The correlation operator 9 of Ref. 10 is
used. It contains two-body, three-body, and mo-
mentum-dependent (back-flow) correlations:

(2)

The effective mass m, *(kF) is 0.76m, certainly
too small by a, factor of 3 to 4. The m*(k „) ob-
tained from the experimental specific heat at very
low temperatures is much larger (2.2m and 2.9m
according to Alvesalo et al."and Mota et al. ,

"
respectively). However, the following calcula-
tions indicate that the e,(k) at large values of g- k Fi is satisfactory.

In the simplest approximation the thermal prop-
erties may be calculated from the e,(k) at T=O.
We use units in which the Boltzmann constant is
1, so that the entropy S and specific heat C„(per
particle) are dimensionless. The entropy S(T) is
given by

S(T) =(- 3/k F3) fk'dk[(l -n„)ln(1 —n„)+n~ inn„],

n„(T)= 1/(exp[(e(k) —1J.)/T]+ 1) .

9 = g f„(r,, ) g f (r,~, r,„) II [1+ifgr, )r, (k, —k, )j,
i&j i& /&A .i&j

and f/', , ), f3(r,z, r,.~), and fear, ~) are variation-
al functions. ' The E, obtained with this 9 by
chain summation methods" is -1.9 K (per par-
ticle). Monte Carlo calculations" with a similar
9 give —1.7 K. From available Green's-function
Monte Carlo calculations" and results given in
Ref. 11 we surmise that the correct ground-state
energy for the Lennard-Jones Hamiltonian is
--2 K. The experimental E, is —2.47 K; the
difference is attributed to deficiencies of the Len-
nard- Jones potential.

The first-order e,(k) can be thought of as the
Hartree-Pock spectrum in the correlated basis.

The free energy F(T) and C„(T) are given by

(5)

(6)

The results obtained with e,(k) are shown in Figs.
1, 3, and 4 by curves C„,(T), S,(T), and F,(T).

The effect of the possible temperature depen-
dence of e,(k) is studied using the variational
method at finite temperatures. " In this method
F(T) = (II)»- TS is obtained by calculating the
thermodynamic expected value (H) ~~ directly by

enchain summation methods. The free energy F(T)
is minimized with respect to variations in e(k) at
every temperature. S„(T)and C„„(T)are ob-
tained by differentiating F(T). The results of this
calculation are shown by curves 8„, I'„, and C„„
in the figures. We note that this variational cal-
culation is of first order in CBPT; it is analogous
to Hartree-Fock at finite temperature. The sim-
ilarity of E„S„and C„, with I „, 8„, and C„
suggests that e,(k) is not very temperature de-
pendent at 1'(2 K.
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FIG. 3. The entropy per particle. The curves ~f ~y,
and ~~ give results of first-order, variational, and
schematic calculations, while ~~ gives experimental
results.

The curves S„E„and C„, give the experi-
mental results. C„, is obtained from the data of
Roberts et al."and Brewer, Daunt, and Sreed-
har" as tabulated by Wilks. " The V(P, T) data of
Sherman and Edeskuty, "corrected by Wilks, "
are used to convert the C„, to C„. Note that
these data extend only above 0.12 K; we extrapo-
late them crudely to C„=O at T=O. The differ-
ences between the two measurements" "of C„
in the millikelvin range would not be noticeable
in Fig. 1.

The relative difference between the first-order
quantities S„E„and C„„and the experimental
S„E„and C„, becomes smaller as T increases.
This can be understood by taking e(k) = h'k'/
2m*(T) in Eqs. (3) and (4), and solving for the
value of m*(T) necessary to reproduce the "ex-
perimental" entropy S,(T). This m*(T) decreases
rapidly with T and approaches -0.8m at T= 2 K.
Thus m, *(k) gives the average value of m* over
a wide range around k~.

The second-order CBPT contribution to e(k)
has two terms containing matrix elements (P IH
&& p,p,h, ) and Q IHIpp, h, h, ) for k =p)k F, and (h Ifl
x h, h, p, ) and QIHIhh, p, p, ) for k=h(k~. Here I)
represent orthogonalized correlated states having
the prescribed particles and holes, and a sum
over p„p„h„and h, is implied. At k=kF the
contributions of these two terms cancel substan-
tially, which implies that the change in the Fer-

mi energy e(k „) is small, as it should be since
e(kF) is related to E,(p). However, the slopes of
the contributions of these two terms add, and
that changes the slope of e(k) at kF. At large jk
-k Fj the second-order correction becomes small
compared to Ie,(k) —e(k F)j, so the e(k) follows
e,(k) at k»kF. The net result is a wiggle at kF.

Here we use a schematic model of Brown and
co-workers' '" to parametrize the contribution of
higher-order CBPT terms to e(k). The object is
to determine the spectrum from the experimental
C„,(T) with the assumption that e(k) is not very
temperature dependent. The schematic model
assumes a simple energy dependence for the
imaginary part W(k, E):

E(k) = e(k) -e(k F),

W(k, E) = W, (E'/(E'+ E,')],
and uses the dispersion integral,

(7)

(8)

(k ) E (k )
1P W(k E ) dE WPEOE(k )

E(k) —E' E'(k)+E,"

to calculate e(k). The parameters W, and E, are
varied to fit C„,(T). The e(k) obtained with W

-2.0
FIG. 4. The free-energy per particle. The curves Ej,

E„, and P~ give results of-first-order, variational, and
schematic calculations, while E, gives experimental re-
sults.
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= 3.08 K and E,=1.1 K is shown by the curve e, (k)
in Fig. 2. It gives a fair description of the ob-
served thermal properties; curves C„,(T), S,(T),
and I', (T) show results obtained with e, (k).
Brown, Pethick, and Zarioghalam' have estimat-
ed values of E, and 8'p with Landau's theory.
Their val ue s Ep 1 K and Wp 2Ep are quite
close to what we need to explain C„,(T). The
C„,(T&0.2 K) samples states having ~E(k) ~s0.5

K. These have a large effective mass; m*(k F)
=2.9m for e,(k). And so the C(T(0.2 K) behaves
crudely as that of a Fermi gas with a large re*.
At T&0.2 K states having @(k)~&0.5 K contribute;
they have m~(1 and cut off the rise of C„with T,
thus producing the bend in C„(T).

We also note that
(i) C„at small temperatures" increases with

p, while at higher temperature" it decreases
with p, and thus the bend in C„(T) becomes sharp-
er with p. We should thus expect m, *(k F) to de-
crease with p, while m*(k F) increases due to the
wiggle becoming more sharp.

(ii) Krotscheck and Smith" have calculated e(k)
in the Jastrow basis [obtained by neglecting f,
and f» in 9 of Eq. (2)], including first-, second-,
and third-order-ring terms. Their results, made
available to us after conclusion of this work and
shown in Fig. 2, are quite close to e, (k).

(iii) It should be possible to calculate the tem-
perature dependence of the second-order CBPT
contribution to e(k). We can expect the wiggle it
produces to disappear at high T.
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