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Resonant Self-Focusing of Laser Light in a Plasma
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When laser light containing two frequencies ~l and ~2 impinges on a plasma with ~&

f 2 plasma waves are resonantly excited. The ponderomotive force of these waves
is much larger than that of the beam, and the self-focusing effect .is greatly enhanced.
With nse of CO2 laser light of only 6X 10 W/cm intensity and a plasma at 0.6%%uo of critical
density n, , this effect is observed as a strong (10 -fold) enhancement of refracted light
at 0 =5'-12' when the density .is at the resonant value.

PA C S numbers: 52.35.Mw, 52.25.Ps, 42.65.Cq, 52.40.Db

In laser-driven inertial-confinement fusion,
the use of multiline lasers h3,s been suggested as
a means of suppressing undesirable parametric
instabilities such as stimulated Brillouin scatter-
ing. Though a broadband pump has been shown'
to be helpful, use of a discrete-line spectrum in-
curs a risk that other instabilities may be driven
at resonant layers where the plasma frequency

w~ matches the frequency difference 6& between
two lines. In particular, we suggest a sequence
of events in which optical mixing first excites a
plasma wave, which is driven to larger amplitude
by stimulated Raman scattering in the forward
direction; the ponderomotive force FNL of the
plasma wave then creates a density depression
on axis, causing a deflection of the laser beam
by refraction. Such a mechanism could alter the
focusing of beams onto a small target. The ef-
fect is similar to ponderomotive self-focusing of
light by a plasma, but the plasma wave greatly
amplifies the effect because of its larger pon-
deromotive force.

The standard theory of self-focusing has been
applied to plasmas by Max, ' and we use an exten-
sion of Ref. 2 to explain the observations. As-
sume a locally Gaussian beam profile and make
the paraxial ray approximation. The amplitude
of the light wave (&o„k,) is then given by

E(z) = (E/f ) exp( r'/a'f '-),

sity; R, = (—df/dz)o ' is the incident wave-front
curvature radius; and

ri=rl, =v /2v„v, = (KT, +KT4)/m, (4)

v, being the peak quiver velocity. At intensities
below a critical value, ' f will decrease from
unity to f,„at the f. ocus and then increase indef-
initely; at higher intensities the beam will oscil-
late in width. The turnaround at f,„ is the re-
sult of diffraction in the near-vacuum conditions
created by E«near the focus; hence, it is es-
sential to keep the exponential nonlinearity in Eq.
(8). In the absence of plasma (6-~), Eq. (2) can
be integrated to give the focal distance

zc =R o(l +4 R,
'

/kca ) '. (5)

In a homogeneous plasma slab, Eq. (2) must be
integrated numerically to give a new focal dis-
tance z,. Applying this to an inhomogeneous plas-
ma of dimension B, one can expect refraction to
have a significant effect on the collimation of the
exit beam when the focal shift Az =z, -z, is com-
parable to R.

To extend this formulation to resonant self-
focusing, one merely has to replace E,' by an
equivalent intensity AE,' due to the plasma wave,
which is assumed also to have a Gaussian pro-
file. The amplification factor A is found from
the ponderomotive forces FNL in each case:

where f (z), the beam width factor, is determined
by'

EN „(light) = —(&o~'/&o, ')V(E,')/8v,

EN„(plasmon) = —v(E~')/8v, (7)

df/dz = —[Rn '+2U(1) -2U(f)]' '

with

2 exp(- ri'/f ')
2a4f 2 k 2a2$2

(2)

Here a is the beam radius where it enters the
plasma (z =0, f =1); 6 is the collisionless skin
depth c/o!~ calculated with the undisturbed den-

where E~ is the amplitude of the plasma wave.
Poisson's equation gives ~E~~ =4ven, /k2; and,
since ~v J =eEgmto, and v ~= to~/kp= c in forward
Raman scattering, Eqs. (6) and (7) yield

EN„(plasmon) v~~n
' n, /n, '

FNL (light) vn n, vc/c

Since A can be very large (for instance, A = 122

874 1982 The American Physical Society



VOLUME 48, NUMBER 13 &&I, REVIEW I, ETTERS 29 MARCH 1/82

=10"W/cm' of 10.6-p, m
e (

'
ht) in the presence of

= 1%%u andI, =

4 d (8) then give
e ne lect ENL lig in

EN„(plasmon); Eqs. (4 an

q = q, = (c/2v, )(n,/n, ).

am litude has thes the plasma-wave amp e
th beam intensity, qs.same radial vavariation as e s.

nt self-focusing if Eq.(2) an) d (3) describe resonant se - o
4).

t th bo 1 i
for instead of Eq.

ns leading to e a
n a reviously descri e s

CO l t' -switched 30-J 2 aprising a gain-
4 Torr of argon. Theand an arc plasma target in orr

focused by an f/nt laser beam is oradially inciden
300- m-diam spot on the columno a

is. The undeflected beam, o a

bt 0=5 dForward-sca ttered radiation e w
th is collected by an12, integrrated over azimuth, is co

nf red monochro-f/2 lens, ana yl zed by an infrare
:Ge hotoconductor.mator, and detected by a Hg: e p
d to produce vari-i

o)
SF cell is use o
of the 10.6-pm

o) i . A10.26-pm (R- 16,
o . ell the line ratio isof 3.5 Torr in the ce

Q. . . h h we show data on y0 1 1. Thoug wapproximately 0. . . h

~ the same saturation~ level was ob-for this case,
~ 1 1Q 2served for a

t' hange in forward-
io Bs low as

rama 1C cFi ure 1 shows the
s the density is chang ed by vary-scattered light as

nd the laser, thebetween the are aing the timing
s the stray-lightl is almost 10' timespeak signa is

ffect occurs wheneverseen that the e ec
3

ls the beat frequency
Th d26- m lines.

unambiguously in ig.
bt t o thd

f 't f th d
stematic error e we
the density. Uni orm'
laser axis is s own

bel inversion of a ru y- a
th' d' '"de og a Fi ure 4 shows e

6cident intensity at n =n„. T res

ured) rise m n
tin and ionization. Thissuiting from laser heating an ioni

10

10
410

K 4
UJ 10

0
0
UJ 10—
CC
UJI-

0
10

UJ)
I-

UJ 10
K

! o

AI

!

~w

0 15 20 26 30
PULSE DELAY (psec)

0
O
LLl

K
UJ

310

O
CO

LU

I-

LLJ 10
IX

10
0.8 0.9 1.0

4)p/Acd

1.2 1.3

d li ht (solid lines) andrd- scattere j.g
',dashed lines) as unc ip

-li ht level is, antiming. The stray- ig
d downwards fordata have been displa ced one deca e

clarity.

ht in the 10.3-pm lineFIG. 2. Forwar-d-scattered Iig in
ed b ruby interferom-ith density measure y r

Stark broadening of a seed gas
t th d of dif-e. The shaded area indicates

s in the incident beam.ference frequencies in e i

875



VOLUME 48, NUMBER 13 PHYSICAL REVIEW LETTERS 29 MARcH 1982

IO
'E 8o
o 6

4
C

I [I I I I

0 0.5 I.O 1.5 2.0 2.5
z(cm)

FIG. 3. Plasma density profile along the laser axis.

effect also shortens the scattered light pulse at
high powers.

By varying the line intensity ratio and, particu-
larly, by using a weak, nonresonant 10.6-p, m

probe line, it was determined that the scattered
light had no measurable frequency shift (& 3 GHz).
The light is refracted and got red- or blue-shift-
ed by an amount w~. Yet the density resonance
requires the existence of a plasma wave w~. Di-
rect detection of this wave by ruby Thomson
scattering is impossible because of the large val-
ue of cI = 1/kXD. An attempt to detect a Stark ex-

cited forbidden line of a He seed gas failed. How-
ever, evidence of the plasma wave was found in
a line around 11 p, m (Fig. 4, inset), which is
presumably the beat between co~ and the 10.26-
p. m line. The 11-p,m line is 30 & stray light and
appears only at n=n„.

To compare with theory, we take Ro= 1 cm,
approximately the radius of the uniform plasma.
The f number of 7.5 then implies a= ~ cm. For
our are conditions T, = 5 eV and T, = T,/3, we
have q, =1.57& 10 Io for 10-pm light. A den-
sity of 5.8x 10 cm gives 5 =22. 1 p. m. Numeri-
cal solution of Eq. (2) for these parameters yields
the curves f (z) shown in Fig. 5 for various val-
ues of g'. These curves show an increasing fo-
cus shift up to g'= &, for higher g, the focusing
returns to its vacuum state as the ponderomotive
force blows the plasma out of the beam. The in-
set of Fig. 5 shows the focus shift Lz vs g' and

the corresponding values of I, (if ri =@I) and n,/n,
(if t) =qp). It is seen that ordinary self-focusing
would not be observable at intensities of = 10' W/
cm' without the resonance amplification effect.

Saturation of the plasma wave would occur at
n, /n, =1 if it were caused by wave breaking (v,
= v ~). Pressure balance, however, sets a much
lower limit. Setting F„„(plasmon) equal to dp/dr,
we find n, /no = 2vI /c = 0.7% at T, = 5 eV. Actually,
Fig. 5 (inset) shows that the refraction effect sat-
urates at a lower value; the peak of bz occurs at
ti~'=0. 3, corresponding to n, /n, =0.4 o/. This lev-
el is consistent with that (= 1%) inferred from the
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FIG. 4. Growth curve of forward-scattered light.
The maximum ratio F'~/lp corresponds to a refracted
power of 25%. Inset: Spectrum of satellite observed
near 11.0 JLLm.
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FIG. 5. Relative beam radius f vs distance z for

various ponderomotive force parameters g . Inset:
The focus shift ~z vs &) .

intensity of the 11-JLt,m line assuming that it is
produced by Thomson scattering of 10.26-pm
light by the plasma wave.

We must now relate n, /n, to the pump intensity
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6X 10 p (10)

In a finite plasma, convection limits the wave
amplitude. The group velocity is v, = Sv, '/v ~

= Sv,'/c, and the radial distance is af , wh. ere
f =0.04 from Fig. 5. The wave energy W =E~'/
8m is thus lost at the rate dW/dt =Wv, /af, „. The
wave amplitude $ grows linearly with time':

h =68/(a&p = (vogv02/c

)Upped/4k'

—(vo /8c )ct.

The wave gains energy W ac g' at the rate dW/dt
= 2W/t, which equals the loss rate at t = 2L/v, ,
when the amplitude is

2
0 'af ~ =85x10 "I

12

Thus convection is the limiting factor for Ip&1.9
x 10", and we use Eq. (11). Setting n, /n, =0.4@
in Eq. (11), we find that ID=4.8x 10 W/cm at

Ip. %hen the pump lines are equally strong, no
stimulated Raman growth is necessary; and we
may use optical mixing theory. In a homogene-
ous plasma, relativistic nonlinearity of the wave
limits its amplitude to'

16 vpy vp2 8 vp

p

saturation, in reasonable agreement with Fig. 4.
The threshold may be defined as the intensity

where A = 1. From Eqs. (8) and (11), we find a
threshold intensity I, = l. lx 10' W/cm', again in
reasonable agreement with observations.

Resonant self-focusing is relevant both to laser
fusion, where it is important to avoid density
resonances by suitable profile modification, and
to ionospheric experiments, where enhanced self-
focusing can be used greatly to amplify micro-
wave beam intensities.
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