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The eigenvalues, E„~, of the radial Schrodinger equation are approximated by ck(E Egf)
= 0 (k = 2, 3, . . .~), where E is the energy and the ck are the power-series coefficients
of f (r) = g(r)/ [r'+ 'w(r)) with g(r) the wave function and w(r) a weight function. This
is an extension of the method used to solve certain potentials exactly where c„(Z=E„&)
= 0 terminates a power series.

PACS numbers: 03.65.6e, 03.65.Fd

The radial Schrodinger equation can be solved
exactly for certain potentials' such as the har-
monic oscillator or Coulomb potential by writing
the wave function in the form

y(r) =w(r)r'" P c„(E)r" ',

H, y(r) =Ey(r),

H, = —,'(d'/dr') + l (—l + 1)/2r' + V(r)

(2)

(3)

for 0 &r - ~ where l (l +1) ~ 0 and y(r) denotes
the solution of (2), for arbitrary real E, which
behaves as r'" as r-0. If g is square integrable
then g =g„and E=E„=E„,(i.e. , l is understood)

with E the energy, and determining the eigen-
values E„(n=1, 2, . ..) by the condition c„(E=E„)
=0 (for appropriate values of k and n) which
terminates the power series. In this Letter I ex-
tend this method to potentials in the radial Schro-
dinger equation which cannot be solved exactly.
I express their wave functions in the form of Eq.
(1) and approximate E„by the E„(') (k = 2, 3, 4, . . .)
which are defined by the condition c„(E=E„~ ) = 0
with E,. "~ &E, k for i &j. While I have no proof that
E„k~ -E„as k - ~ I do offer an argument concern-
ing the validity of approximating E„by E„' for
a large class of potentials for certain choices of
w(r) in (1) and I give numerical evidence of con-
vergence for several nonlinear potentials. Ap-
proximation of the eigenvalues by means of c„(E)
=0 is simple in concept and in computation. For
many potentials obtaining c„(E) (from a recur-
rence relation) and solving c„(E)=0 requires far
fewer computational steps than standard methods
such as matrix diagonalization, ' the Hill deter-
minant, ' variational procedures, ' or other power-
series methods" do at their kth order. These
other power-series methods are the closest in
approach to the present work although they do
not consider what the square integrability of P(r)
means in terms of the behavior of c,(E).

Let us consider the radial Schrodinger equation

otherwise g = (, and E =E,. The weight function
w(r) will be designated as a member of class W

if w(r) and f(r) = g/r'"w(r) are in one of the fol-
lowing four categories: (1) w(r) =exp(-nr), a
&0. (2) w(r) =exp(-ar'), o, &0; f(-r) =+f(r).
(3) M '(z), for complex z, is analytic for 0 &z

&~; and there exists an u &0 for which ge ""/
w(r) is square integrable if and only if E =E„.
(4) w '(z) is analytic for 0 -z&~; f( r) =+f-(r);
and there exists an o. &0 for which /exp(-or' )/
w(r) is square integrable if and only if E =E„.
The first category is useful when V(r) -0 as r
—~; the second for perturbations of harmonic
oscillators with V(-r) = ~ V(r); the third and
fourth allow for a choice of other w(r)'s for non-
linear potentials with and without symmetry. For
most potentials of interest, ' P„-e s and g, -e's
as r —~ with S-Pr" (P&0, p. & 1) so that it is
usually not difficult to find a. range of w(r)'s
whose asymptotic behavior is sufficiently close
to that of g„ to satisfy either category 3 or 4.
Categories 1 and 2 have been used previously by
Killingbeck, ' in an improvement of the method
of Secrest, Cashion, and Hirschfelder. '

I now show that if w(r) is in class W and z V(z)
is analytic for 0 ~z & ~ then

lim A, c„(E)= 0 if E = E„,
k

if E=E, ,
(4)

where A, =pI (q+ I)/o. '&0, I'(q+1) is the gamma
function, q = q(k) = (k+y+l )/p, e &0 is defined in
the description of class 8', y &0 is to be defined,
and p =1 (p =2) for w(r) in categories 1 or 3 (2
or 4). Equation (4) serves as our basis for ap-
proximating the E„by the roots of A~c„(E) =0
(k = 2, 3, 4, . . .). These roots are the E„(") since
A„&0. The above conditions on V(r) and w(r)
imply that g can be written in the form of Eq. (1)
with the series uniformly convergent. Since g„
is square integrable and P, is not there exists a.

y & 0 such that r «g„-0 as r —~ but r «p, —~ as
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r —~ [this can also be seen from an asymptotic
analysis" of Eq. (2)]. I et F(r, E) =rrP; then the
eigenvalues E„are uniquely determined as those
E for which F(™,E) = 0. Since F(0, E) = 0,

F(~, E) = ) g(r)dr, (5)

where

g(r) = d(r ry)/dr (6)

with the integral in (5) infinite if E =E,. We first
consider u(r) in categories 1 and 2 of class W;

then placing Eq. (1) with w(r) =exp(-nr») (p =1 or
2) in Eq. (6) gives

g(r) =exp{-nr») P b»r" ~" ',
0 =1

where

5» =pq'c» (1pc»

(7)

(8)

F,(E) = Q pqc, r(q)/a'- Q +pc, ~r (q)/o. ',

(10)

with q=q(k) and c»»=0 if k -p 0. Since the
series in (7) is uniformly convergent for 0-r &~
we can place (7) in (5) and carry out a term-by-
term integration to find

F(~, E) = lim F, (E),

where q=q(j). Making the change of index j—j
+p in the second sum in (10) and subtracting it
from the first sum, one finds (for p= 1, or p=2
with either all the c»'s zero or all c»+,'s zero)
that F»(E) is given by A, c»(E). This establishes
Eq. (4) for w(r) in categories 1 and 2. For w(r)
in category 3, we let g = w(r) e "P„g,= r' "e
x f(r), and hence j =r'"w(r) f(r). For w(r) in
category 4, we let g=w(r)exp(c»r')It» g, =r'"
xexp(-nr')f(r), and hence P=r'"w(r)f(r). Since

f(r) then has a convergent power series [ w '(s)
is analytic for 0 -x &~j and in categories 3 and

4, g, and g» respectively, are square integrable
if and only if E =E„, we can treat g, as a j with
a w{r) in category 1 and j, as a P with a w{r) in
category 2. Hence Eq. (4) holds for w (r) in class
8'.

The fact that A„c,(E,) - ~ as k —~ while

A„c„(E„) 0 leads us to an intuitive expectation
(but not a proof) that for sufficiently large k, for
a, given M)0, those E, for which ~Ac»»(E, ) ~&M

will be good approximations to an E„. Thus E„~~,
which satisfies A»c»(E„(" )) = 0, should for suffi-
ciently large k be a good approximation to E„
which satisfies A„c,(E„)= e» with

~ e» ~

-0 as k

This appears to be the case for the poten-
tials considered in Tables I and II. In the first
two columns of Table I, I consider V(r) = r'/2
+) r4 using u(r) = exp(-vr2)/2 which does not have

TABLE I. Eigenvalues, E„&, from c„{E„,) = 0 where g(r) = w(r)r "~Zc»r~» 2.

(1D, one-dimensional. )

x) y2/2+10r4
l n =1,1D
r) exp( —vr')/2,

v =9/2

y~/2+ y4/2

n~4, l=2
exp(- vr')/2,

v =9/2

r4+ r'/Io
n=7, 1D

exp { ar 2 br 4-), —
a2=5/4, b 2=80

4
8
12
16
20
24
28
32
36
40
44
48
52
56
60

1.312 604 006 513
1.491 168 507 807
1.504 567 305 039
1.505 137 941 860
1.505 020 775 435
1.504 978 504 628
1.504 972 063 514
1.504 972 088 588
1.504 972 357 330
1.504 972 413 832
1.504 972 411 757
1.504 972 408 158
1.504 972 407 589
1.504 972 407 719
1.504 972 407 783
1.504 972 407 785

21.483 014 640 05
20.648 022 238 24
23.320 408 010 66
23.385 267 973 38
23.289 916481 31
23.294 552 579 60
23.294 736 97938
23.294 733 442 50
23.294 733 045 53
23.294 733 031 88
23.294 733 031 71
23.294 733 031 73
23.294 733 031 73
23.294 733 03173
23.294 733 031 73
23.294 733 03173

18.434 457 754 55
18.273 579 016 99
18.264 976 481 23
18.264 372 518 79
18.264 322 430 69
18.264 317 639 77
18.264 31712115
18.264 317058 63
18.264 317050 34
18.264 327 049 15
18.264 317048 97
18.264 317048 94
18.264 317048 93
18.264 317048 93
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TABLE II. Eigenvalues, E„&, from c~ (E„&)= 0 where g(r) = exp( —(-2 E)' 'r]r ' '

xgc~y"

—1//r + r/20
n=1, /=0

-r 'exp(- 0.15r)
n=1, l =0

—exp(- r/20)
n=l, l=l

8
12
16
20
24
28
32
36
40

—0.386 539 789 364 9
—0.427 557 360 3115
—0.428 111157 062 8
—0.428119953 095 3
—0.428 119980 722 9
—0.428 119973 443 9
—0.428 119973 015 8
—0.428 119973 005 7
—0.428 119973 006 2
—0.428 119973 006 3
—0.428 119973 0063

—0.381 950 451 432 9
—0.365 619525 9133
—0.365 463 624 547 2
—0.365 460 899 680 7
—0.365 460 806 201 7
—0.365 460 800 568 2
—0.365 460 800 023 7
—0.365 460 799 945 2
—0.365 460 799 929 3
—0.365 460 799 925 0
—0.365 460 799 923 1

—0.653 601 107 703 9
—0.670 505 265 469 2
—0.670 311305 406 6
—0.670 290 666 990 8
—0.670 289 562 653 9
—0.670 289 449 228 9
—0.670 289 497 087 0
—0.670 289 497 413 2
—0.670 289 497 481 1
—0.670 289 497 480 6

the same asymptotic behavior as g„as r -~.
The parameter v is a function of the anharmonic-
ity and state chosen to improve the rate of con-
vergence. As an example of estimating v, I
consider the ground state of V(r) =r'/2+Xr4 in
one dimension (l = -1) and determine v by v =2E,
where E, is given by c,(E,) =0. This gives the
equation for v:

v' —v -3A. =O.

Solving (11) and using E, = v/2 one finds as A. —0,
E, = —,'+3k/4+ 0(A.'), the first-order perturbation
theory result; and for A. -~, E, -0.72k' ' com-
pared with the known asymptotic behavior Ey
-0.67k.' '. At higher orders one can continue to
let v depend explicitly on E or, having determined
a value for v (such as v =~2 in Table I), retain it
for each other. In the third column of Table I, a
u(r) (in category 3) with the correct asymptotic
behavior is used for V(r) =r4+r'. The sixtieth-
order calculation for these potentials required
approximately the same computer time as obtain-
ing one root of a 15X15 matrix. In Table II, I
consider V(r) = 1/r+Ar, -a, Yukawa. potential,
and an exponential potential, using a weight func-

tion, m(r) =exp[-(-2E) 'r], which depends explic-
itly on E. This gives the correct asymptotic be-
havior for the last two of these potentials which
have infinite power series. The fortieth-order
calculation for these two potentials in Table II
required approximately twice the computer time
of the sixtieth-order calculations in Table I since
the number of terms in their recurrence relation
for c„ increases with 0, unlike a finite polynomial
potential for which the number of terms is fixed.
Applications of this method to other potentials of
interest will be given elsewhere.
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