Eigenvalue Method

Charles A. Ginsburg 1170 Genesee Street, Rochester, New York 14611 (Received 2 December 1981)

The eigenvalues, E_{nl} , of the radial Schrödinger equation are approximated by $c_k(E = E_{nl}) = 0$ $(k = 2, 3, \ldots, \infty)$, where E is the energy and the c_k are the power-series coefficients of $f(r) = \psi(r)/[r^{l+1}w(r)]$ with $\psi(r)$ the wave function and w(r) a weight function. This is an extension of the method used to solve certain potentials exactly where $c_k(E = E_{nl}) = 0$ terminates a power series.

PACS numbers: 03.65.Ge, 03.65.Fd

The radial Schrödinger equation can be solved exactly for certain potentials¹ such as the harmonic oscillator or Coulomb potential by writing the wave function in the form

$$\psi(r) = w(r)r^{l+1} \sum_{k=1} c_k(E)r^{k-1},$$
 (1)

with E the energy, and determining the eigenvalues E_n (n = 1, 2, ...) by the condition $c_k (E = E_n)$ = 0 (for appropriate values of k and n) which terminates the power series. In this Letter I extend this method to potentials in the radial Schrödinger equation which cannot be solved exactly. I express their wave functions in the form of Eq. (1) and approximate E_n by the $E_n^{(k)}$ (k = 2, 3, 4, ...)which are defined by the condition $c_k(E = E_n^{(k)}) = 0$ with $E_i^{(k)} > E_j^{(k)}$ for i > j. While I have no proof that $E_n^{(k)} \rightarrow E_n$ as $k \rightarrow \infty$ I do offer an argument concerning the validity of approximating E_n by $E_n^{(k)}$ for a large class of potentials for certain choices of w(r) in (1) and I give numerical evidence of convergence for several nonlinear potentials. Approximation of the eigenvalues by means of $c_{\mu}(E)$ = 0 is simple in concept and in computation. For many potentials obtaining $c_{k}(E)$ (from a recurrence relation) and solving $c_{\mathbf{b}}(E) = 0$ requires far fewer computational steps than standard methods such as matrix diagonalization,² the Hill determinant,³ variational procedures,⁴ or other powerseries methods^{5,6} do at their kth order. These other power-series methods are the closest in approach to the present work although they do not consider what the square integrability of $\psi(r)$ means in terms of the behavior of $c_{\mu}(E)$.

Let us consider the radial Schrödinger equation

$$H_{I}\psi(r) = E\psi(r), \qquad (2)$$

$$H_{l} = -\frac{1}{2}(d^{2}/dr^{2}) + l(l+1)/2r^{2} + V(r)$$
(3)

for $0 \le r \le \infty$ where $l(l+1) \ge 0$ and $\psi(r)$ denotes the solution of (2), for arbitrary real E, which behaves as r^{l+1} as $r \to 0$. If ψ is square integrable then $\psi = \psi_n$ and $E = E_n = E_{nl}$ (i.e., l is understood) otherwise $\psi = \psi_c$ and $E = E_c$. The weight function w(r) will be designated as a member of class W if w(r) and $f(r) = \psi/r^{l+1}w(r)$ are in one of the following four categories: (1) $w(r) = \exp(-\alpha r)$, α >0. (2) $w(r) = \exp(-\alpha r^2)$, $\alpha > 0$; $f(-r) = \pm f(r)$. (3) $w^{-1}(z)$, for complex z, is analytic for $0 \le z$ < ∞ ; and there exists an $\alpha > 0$ for which $\psi e^{-\alpha r} / d\alpha$ w(r) is square integrable if and only if $E = E_n$. (4) $w^{-1}(z)$ is analytic for $0 \le z < \infty$; $f(-r) = \pm f(r)$; and there exists an $\alpha > 0$ for which $\psi \exp(-\alpha r^2)/2$ w(r) is square integrable if and only if $E = E_n$. The first category is useful when $V(r) \rightarrow 0$ as r $-\infty$; the second for perturbations of harmonic oscillators with $V(-r) = \pm V(r)$; the third and fourth allow for a choice of other w(r)'s for nonlinear potentials with and without symmetry. For most potentials of interest, $^{7}\psi_{n} \sim e^{-s}$ and $\psi_{c} \sim e^{+s}$ as $r \rightarrow \infty$ with $S \sim \beta r^{\mu}$ ($\beta > 0, \mu \ge 1$) so that it is usually not difficult to find a range of w(r)'s whose asymptotic behavior is sufficiently close to that of ψ_n to satisfy either category 3 or 4. Categories 1 and 2 have been used previously by Killingbeck,⁶ in an improvement of the method of Secrest, Cashion, and Hirschfelder.⁵

I now show that if w(r) is in class W and zV(z) is analytic for $0 \le z < \infty$ then

$$\lim_{k \to \infty} A_k c_k(E) = 0 \quad \text{if } E = E_n,$$

$$= \infty \quad \text{if } E = E_c,$$
(4)

where $A_k = p \Gamma(q+1)/\alpha^q > 0$, $\Gamma(q+1)$ is the gamma function, $q = q(k) = (k+\gamma+l)/p$, $\alpha > 0$ is defined in the description of class W, $\gamma > 0$ is to be defined, and p = 1 (p = 2) for w(r) in categories 1 or 3 (2 or 4). Equation (4) serves as our basis for approximating the E_n by the roots of $A_k c_k(E) = 0$ ($k = 2, 3, 4, \ldots$). These roots are the $E_n^{(k)}$ since $A_k > 0$. The above conditions on V(r) and w(r)imply that ψ can be written in the form of Eq. (1) with the series uniformly convergent. Since ψ_n is square integrable and ψ_c is not there exists a $\gamma > 0$ such that $r^{\gamma}\psi_n \to 0$ as $r \to \infty$ but $r^{\gamma}\psi_c \to \infty$ as $r \rightarrow \infty$ [this can also be seen from an asymptotic analysis⁷ of Eq. (2)]. Let $F(r, E) = r^{\gamma}\psi$; then the eigenvalues E_n are uniquely determined as those E for which $F(\infty, E) = 0$. Since F(0, E) = 0,

$$F(\infty, E) = \int_0^\infty g(r) dr , \qquad (5)$$

where

$$g(r) = d(r^{\gamma}\psi)/dr$$
(6)

with the integral in (5) infinite if $E = E_c$. We first consider w(r) in categories 1 and 2 of class W; then placing Eq. (1) with $w(r) = \exp(-\alpha r^p)$ (p = 1 or 2) in Eq. (6) gives

$$g(r) = \exp(-\alpha r^{p}) \sum_{k=1}^{\infty} b_{k} r^{k+\gamma+l-1}, \qquad (7)$$

where

$$b_{k} = pqc_{k} - \alpha pc_{k-p} \tag{8}$$

with q = q(k) and $c_{k-p} = 0$ if $k - p \le 0$. Since the series in (7) is uniformly convergent for $0 \le r < \infty$ we can place (7) in (5) and carry out a term-by-term integration to find

$$F(\infty, E) = \lim_{k \to \infty} F_k(E) , \qquad (9)$$

$$F_{k}(E) = \sum_{j=1}^{k} pqc_{j} \Gamma(q) / \alpha^{q} - \sum_{j=1}^{k} \alpha pc_{j-j} \Gamma(q) / \alpha^{q},$$
(10)

where q = q(j). Making the change of index $j \rightarrow j$ +p in the second sum in (10) and subtracting it from the first sum, one finds (for p = 1, or p = 2with either all the c_{2j} 's zero or all c_{2j+1} 's zero) that $F_{\mathbf{b}}(E)$ is given by $A_{\mathbf{b}}c_{\mathbf{b}}(E)$. This establishes Eq. (4) for w(r) in categories 1 and 2. For w(r)in category 3, we let $\psi = w(r)e^{\alpha r}\psi_1$, $\psi_1 = r^{l+1}e^{-\alpha r}$ $\times f(r)$, and hence $\psi = r^{l+1}w(r)f(r)$. For w(r) in category 4, we let $\psi = w(r) \exp(\alpha r^2) \psi_2$, $\psi_2 = r^{l+1}$ $\times \exp(-\alpha r^2)f(r)$, and hence $\psi = r^{l+1}w(r)f(r)$. Since f(r) then has a convergent power series $[w^{-1}(z)]$ is analytic for $0 \le z < \infty$ and in categories 3 and 4, ψ_1 and ψ_2 , respectively, are square integrable if and only if $E = E_n$, we can treat ψ_1 as a ψ with a w(r) in category 1 and ψ_2 as a ψ with a w(r) in category 2. Hence Eq. (4) holds for w(r) in class W.

The fact that $A_k c_k(E_c) \rightarrow \infty$ as $k \rightarrow \infty$ while $A_k c_k(E_n) \rightarrow 0$ leads us to an intuitive expectation (but not a proof) that for sufficiently large k, for a given M > 0, those E_c for which $|A_k c_k(E_c)| < M$ will be good approximations to an E_n . Thus $E_n^{(k)}$, which satisfies $A_k c_k(E_n^{(k)}) = 0$, should for sufficiently large k be a good approximation to E_n which satisfies $A_k c_k(E_n) = \epsilon_k$ with $|\epsilon_k| \rightarrow 0$ as $k \rightarrow \infty$. This appears to be the case for the potentials considered in Tables I and II. In the first two columns of Table I, I consider $V(r) = r^2/2$ $+\lambda r^4$ using $w(r) = \exp(-\nu r^2)/2$ which does not have

TABLE I. Eigenvalues, E_{nl} , from $c_k(E_{nl}) = 0$ where $\psi(r) = w(r)r^{l+1}\sum c_k r^{2k-2}$. (1D, one-dimensional.)

V(1 n,l w(1 k	r) $r^{2}/2 + 10r^{4}$ n = 1, 1D r) $\exp(-\nu r^{2})/2$, $\nu = 9/2$	$r^{2}/2 + r^{4}/2$ n = 4, l = 2 $\exp(-\nu r^{2})/2,$ $\nu = 9/2$	$r^{4} + r^{6}/10$ n = 7, 1D $\exp(-ar^{2} - br^{4}),$ $a^{2} = 5/4, b^{-2} = 80$
4	1.312 604 006 513	21.483 014 640 05	
8	1.491168507807	20.64802223824	
12	1.504567305039	$23.320\ 408\ 010\ 66$	18.43445775455
16	1.505137941860	23.38526797338	18.27357901699
20	1.505020775435	23.28991648131	18.26497648123
24	1.504978504628	23.29455257960	18.26437251879
28	1.504972063514	23.29473697938	18.26432243069
32	1.504972088588	23.29473344250	18.26431763977
36	1.504972357330	23.29473304553	18.26431712115
40	1.504972413832	23.29473303188	18.26431705863
44	1.504972411757	23.29473303171	18.26431705034
48	1.504972408158	23.29473303173	18.26432704915
52	1.504972407589	23.29473303173	18.26431704897
56	1.504972407719	23.29473303173	18.26431704894
60	1.504972407783	23.29473303173	18.26431704893
×	1.504972407785	23.29473303173	18.26431704893

V (1 n, i	r) $-\frac{1}{r} + \frac{r}{20}$ n = 1, l = 0	$-r^{-1}\exp(-0.15r)$ n=1, l=0	$-\exp(-r/20)$ n=1, l=1
4	- 0.386 539 789 364 9	- 0 381 950 451 432 9	
8	-0.4275573603115	-0.3656195259133	- 0.653 601 107 703 9
12	-0.4281111570628	-0.3654636245472	- 0.670 505 265 469 2
16	-0.4281199530953	-0.3654608996807	- 0.670 311 305 406 6
20	- 0.428 119 980 722 9	-0.3654608062017	- 0.670 290 666 990 8
24	-0.4281199734439	-0.3654608005682	- 0.670 289 562 653 9
28	-0.4281199730158	-0.3654608000237	- 0.670 289 449 228 9
32	-0.4281199730057	-0.3654607999452	- 0.670 289 497 087 0
36	-0.4281199730062	-0.3654607999293	-0.6702894974132
40	-0.4281199730063	-0.3654607999250	-0.6702894974811
∞	-0.4281199730063	-0.3654607999231	- 0.670 289 497 480 6

TABLE II. Eigenvalues, E_{nl} , from $c_k(E_{nl}) = 0$ where $\psi(r) = \exp[-(-2E)^{1/2}r]r^{l+1} \times \sum c_k r^{k-1}$.

the same asymptotic behavior as ψ_n as $r \to \infty$. The parameter ν is a function of the anharmonicity and state chosen to improve the rate of convergence. As an example of estimating ν , I consider the ground state of $V(r) = r^2/2 + \lambda r^4$ in one dimension (l = -1) and determine ν by $\nu = 2E_1$ where E_1 is given by $c_4(E_1) = 0$. This gives the equation for ν :

$$\nu^3 - \nu - 3\lambda = 0. \tag{11}$$

Solving (11) and using $E_1 = \nu/2$ one finds as $\lambda \to 0$, $E_1 = \frac{1}{2} + 3\lambda/4 + O(\lambda^2)$, the first-order perturbation theory result; and for $\lambda \to \infty$, $E_1 \sim 0.72\lambda^{1/3}$ compared with the known asymptotic behavior, 5E_1 $\sim 0.67\lambda^{1/3}$. At higher orders one can continue to let ν depend explicitly on E or, having determined a value for ν (such as $\nu = \frac{9}{2}$ in Table I), retain it for each other. In the third column of Table I, a w(r) (in category 3) with the correct asymptotic behavior is used for $V(r) = r^4 + r^6$. The sixtiethorder calculation for these potentials required approximately the same computer time as obtaining one root of a 15×15 matrix. In Table II, I consider $V(r) = -1/r + \lambda r$, a Yukawa potential, and an exponential potential, using a weight function, $w(r) = \exp[-(-2E)^{1/2}r]$, which depends explicitly on *E*. This gives the correct asymptotic behavior for the last two of these potentials which have infinite power series. The fortieth-order calculation for these two potentials in Table II required approximately twice the computer time of the sixtieth-order calculations in Table I since the number of terms in their recurrence relation for c_k increases with *k*, unlike a finite polynomial potential for which the number of terms is fixed. Applications of this method to other potentials of interest will be given elsewhere.

¹L. I. Schiff, *Quantum Mechanics* (McGraw-Hill, New York, 1955), 2nd ed.

²S. I. Chan, D. Stelman, and L. Thompson, J. Chem. Phys. 41, 2828 (1964).

³S. N. Biswas, K. Datta, R. P. Saxena, and P. K.

Srivastata, J. Math. Phys. (N.Y.) <u>14</u>, 1190 (1973). ⁴N. Bazley and D. Fox, Phys. Rev. <u>124</u>, 483 (1961).

⁵D. Secrest, K. Cashion, and J. O. Hirchfelder, J. Chem. Phys. <u>37</u>, 830 (1962). ⁶J. Killingbeck, Phys. Lett. 84A, 95 (1981).

⁷W. A. Coppel, Stability and Asymptotic Behavior of Differential Equations (Heath, Boston, 1965).