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Transverse Electromagnetic Waves with E II B
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It is shown that a general class of transverse electromagnetic waves with E II B exists
These waves possess magnetic helicity. IXI. the case of plasma, both a high-frequency
branch with ~ =(

&
+4' c and a low-frequency branch with ~~ 0 are allowed. The zero-

frequency branch corresponds to the force-free magnetic field 'Px B=QB. These waves
also exist in magnetized plasmas over a wide frequency range.

PACS numbers: 08.50.De, 41.10.Hv, 52.85.Hr

It is generally believed that in transverse elec-
tromagnetic waves electric field E and magnetic
field B are always perpendicular to each other.
In this Letter we show that, however, a general
class of transverse electromagnetic waves with
E~~ B exists. We show how to obtain these waves
in general and give examples in vacuum and plas-
mas. All these waves carry magnetic helicity.
In a cold collisionless plasma, the magnetostatic
mode' ' of this class becomes the more familiar
force-free field ~ x B =kB.

We consider transverse electromagnetic waves
in a uniform medium. These transverse waves
can be described by

B=gxA, (l)

184
(2)c8t'

in which the vector potential A satisfies ~ ~ A=0
and the wave equation

1 ~ A 4n'-.VxVxA+—c' Bt2 c

Here

where 0 i.s the conductivity tensor operator of the

medium under consideration. After Fourier anal-
ysis in time, we have

V x V x A —(~'/c') K(v) ~ A =0

with the dielectric tensor

K((d) =7- 4&(T ((d)/$(d.

For simplicity, we consider only cases where
K(&u) is independent of wavelength.

We first look at the vacuum case. In vacuum
o =0 and Eti. (4) becomes

(v'+I ')A„=o (5)

with ~' =k'c'. This wave equation allows the well-
known linear polarized plane waves with E L B.4
For every solution of Etl. (5), it is straightfor-
ward to show that

F„=A,+k-'v x A„

satisfies not only Eq. (5) but also

vxF„=kF„.
For those vector potentials A satisfying Eq. (7),
the electric field E and magnetic field B are par-
allel to each other and both are perpendicular to
the vector %. Therefore, for every plane wave
solution, a wave solution with E ~~ B can be con-
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structed. An example is

% =k(0, 0, 1),
A =A(sinkz, coskz, 0)cosset,

E =(&uA/c)(sinkz, coskz, 0)sin~t,

and

B =kA (sin kz, cos kz, 0)cos ~t .
This solution corresponds to two circularly po-
larized waves' propagating opposite to each other
in such a way that their Poynting vectors are can-
celled out. It is interesting to note that this vac-
uum wave possesses magnetic helicity' JA ~ BdV.
The time-averaged magnetic helicity density is
related to the energy density & by

2~ z' B' 2w
(A B) = — +— = —e.

4& 4r

Therefore, a single helical photon with energy
@& carries a magnetic helicity of hc.

We can also use the solutions of Eq. (t) to find
the Eii B waves in other media. In the case of un-
magnetized plasma, the dielectric tensor K be-
comes diagonal, and from Eq. (4) we obtain the
dispersion relation"

k C /&d =1 —(d& /R((d +tV),

where ~ is the plasma frequency and v is the col-
lision frequency. This dispersion relation gives
both a high-frequency branch"

(d =+ ((dp +k C ) +k C /p

and a low-frequency branch"

zv

1 + &u~'/k'c' '

The high-freqency mode is very similar to the
vacuum modes. The low-frequency mode, in
which conducting current dominates over displace-
ment current, has no counterpart in vacuum. It
is easily verified that the magnetic helicity of
these waves decays at the same rate as the wave
energy.

In the low-frequency mode, a small electric
field proportional to v exists to give the necessary
current j parallel to B. In the limit, v-o, both
the electric field E and resistivity vanish, and the
low-frequency mode becomes the force-free field
V &&8 =kB.' ' These force-free fields have been
used to describe plasma discharges and turbu-
lences in fusion researches. ' "

These purely transverse Eii B waves can also

propagate in plasmas in a uniform external field
B,. With% parallel to B„ the dispersion relation
for a cold plasma is given by

k2c2/&u =R

C2/K2

where R and I- are the dielectric constants for
right-hand and left-hand polarization, respective-
ly. ' Equation (8) covers electron cyclotron waves, '
whistler waves, ' and fast waves. Equation (9)
includes ion cyclotron waves. In the low-f re-
quency limit (~ «&;, where &; is the ion cyclo-
tron frequency in B,), both R and I approach the
value &u~ /0 and the waves become helical shear
Alfven waves. ' The plasma fluid velocity v
=&(E & B,)/&, ' in these waves is perpendicular to
the wave magnetic field B in contrast to the case
of ordinary shear Alfven wave in which vii B. This
class of helical shear waves has been studied
from magnetohydrodynamics equations by Mura-
ta."

In conclusion, we have shown that a general
class of transverse electromagnetic waves with
Eii B exists. The familiar force-free field V &B
=kB js a member of this family.
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