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Renormalization-Group Transformation for the Anderson Transition
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A lattice model of a d-dimensional disordered system is considered. The model is
studied by a Migdal-Kadanoff renormalization-group transformation. In particular, lo-
calization in a macroscopically inhomogeneous medium is considered, and it is demon-
strated that macroscopic disorder (above the percolation threshold) does not affect the
critical exponents of the Anderson transition.
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Some time ago Abrahams et al. ' developed a
scaling theory of localization for noninteracting
electrons. The scaling parameter in their theory
is the dimensionless conductance g(L) =G(L)/(e'/
k) at length scale L. Here G(L) is the zero-tem-
perature dc conductance of a hypercube of size L
in d dimensions. For d & 2, the scaling theory of
Ref. 1 predicts a metal-insulator transition. At
the transition the conductance g(L) of a sample is
independent of sample size L and it assumes
some critical value g, (i.e., the conductivity, o',

=lim~ „L' "g„ is zero). This value is achieved
when the Fermi level EF coincides with the mo-
bility edge E, . Near (above) E, the conductivity
o (EF) obeys a power law (EF -E,)', while the
correlation (localization) length g diverges as
(E~ —E, ) ". Exponents t and v are related by'~
t=(d —2)v. Near two dimensions (i.e. , when d
—2 = e «1) v = 1/e, i.e., t = 1.' ' Various numer-
ical estimates of the exponent v in three dimen-
sions range from' v ~ 0.66 to' 1.25& v & 1.75 (Ref.
7 contains a summary of available estimates).

The purpose of this Letter is to introduce a d-
dimensional lattice model of a disordered medi-
um, and to study this model by a simple renor-
malization-group (RG) transformation. Both mi-
croscopic (quantum) and macroscopic (classical)
disorder can be incorporated into the model, so
that the interplay between quantum localization
and classical percolation can be studied. The
model is based on a scattering formalism for
the quantum transport problem —a formalism
which has been successfully used in recent ana-
lytical and numerical studies of localization (see
Refs. 8-13 and references therein).

I consider a d-dimensional hypercubic lattice.
Each site of the lattice is occupied by a random
scatterer with 2d incoming and 2d outgoing chan-
nels (see Fig. 1 for a two-dimensional example).
A scatterer represents some region of a disor-
dered medium, and it can be characterized by a
2d & 2d random scattering matrix S &. This

Writing down Eqs. (1) for each scatterer, one
obtains Nz coupled equations (N is the number of
sites in the lattice, z = 2d is the coordination
number) for the Nz amplitudes. " These equa-
tions supplemented by boundary conditions at
perfect leads" (through which the electrical cur-
rent enters and leaves the lattice) enable one, in
principle, to calculate the current, and thus the
conductance of the lattice. I mill not discuss
boundary conditions in more detail, since they
will not be needed in the RG approach employed
below. However, it is important to realize that
the outlined discussion provides a well-defined
procedure for a calculation of the conductance of
a lattice of random quantum scatterers.

Now I apply a Migdal-Kadanoff type RG trans-
formation" "to this model. The lattice is par-
titioned into equal hypercubic cells of edge b (b
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FIG. 1. A two-dimensional scatterer with four in-
coming (amplitudes A~) and four outgoing (amplitudes
B~) channels.

model is a d-dimensional generalization of the
one-dimensional model of Ref. 9. Amplitudes B
of the waves outgoing from a scatterer are re-
lated to the amplitudes A6 of the incoming waves
by

2d

B =Q SasAs (o. =1,.. . , 2d).
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is the scaling factor). The direction of the aver-
age current is singled out, and bonds in the other
d -1 directions (perpendicular to the current di-
rection) are cut." Thus each cell now contains
6" ' chains in parallel, while each chain contains
b scatterers in series.

The b scatterers along a chain can be combined
according to the rules worked out in Ref. 9. The
important assumption is that the phase of the re-
flection (or transmission) amplitudes in the 8
matrix of a scatterer is completely random.
This assumption implies that the lattice spacing
L, (i.e., the size of a disordered region repre-
sented by a scatterer) is much larger than some
microscopic lerigth l at which the phases are
randomized. It is this assumption that enables
one to combine directly the resistances, rather
than the scattering amplitudes, of the scatterers. '
For b scatterers in series the result is

p, =(1+p)'-1,
where p, and p are typical or scale (dimension-
less) resistances of a, chain and of a single scat-
terer, respectively. In a more rigorous treat-
ment one should scale the whole distribution of
resistances, rather than a typical resistance, as
explained in Ref. 9.

To complete the renormalization procedure I
now combine the resistances of the b" ' chains in
parallel. This is done according to the classical
ohm's law, since there is no scattering between
different chains. Thus the renormalized resis-
tance p ' (i.e. , the typical resistance of a cell of
b~ scatterers) is

or in infinitesimal form (i.e., b = 1+ f, where &

-0)
p' = p+ g[(1+p)ln(1+ p) —(d —1)p].

This transformation has a nontrivial fixed
point p, only for d &2, which is in agreement
with the scaling theory of localization. ' For d
—2 =- e «1 the recursion relation (4) can be ex-
amined analytically with the following results:
p, =2@, v =1/e, and t = (d —2)v = l. Thus near
two dimensions the RG transformation produces
the asymptotically exact exponents. At d = 3
numerical analysis leads to p, = 3.92 and v = t
=1.68. This value of v is compatible with the
estimate of Sarker and Domany, ' 1.25 + v &1.75,
but much higher than the other estimates cited
above and in Ref. 7.

So far the discussion has been limited to mi-
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FIG. 2. Flow diagram generated by recursion equa, —

tions (5) and (7), with g = 0.02, at three dimensions.
The percolation threshold P = 0.16, the critica1 re-
sistance for macroscopically homogeneous localization
p, = 3.92. The percolation and localization fixed points
are {0.16; 0) and (1; 3.92), respectively. The thick
solid line is the critical line p, (p). The three dashed
lines are representative flow lines in the three regions
discussed in the text. These three lines approach the
three trivial fixed points (0; ~), (1;), and {1;0),
respectively.

croscopically random but macroscopically homo. -
geneous medium. Next, I discuss localization in
a macroscopically inhomogeneous sample, wi+h

percolation disorder. Percolation can be incor-
porated into the present model by introducing a
probability P that a site is occupied by a (random)
scatterer. Then 1-P is the probability that a
site is empty, which corresponds to total reflec-
tion of the incident wave. The case P =1 corre-
sponds to a macroscopically homogeneous dis-
ordered medium considered above. " Since per-
colation disorder in this model occurs at scale
L, (lattice spacing) it represents a macroscopic
disorder, as opposed to the microscopic disorder
at scale l discussed above. "

There are two parameters in this model: the
occupation probability P and the typical resis-
tance p of a scatterer. Thus one can expect a
critical curve p,(P) separating between metallic
and insulating regions in the P-p plane. Such a.

"phase diagram" has been recently suggested by
Khmelnitskii. ' Below, I calculate numerically
the p, (P) curve (thick solid line in Fig. 2) for the
outlined model by the RG transformation de-
scribed above.

The procedure is essentially the same as for
classical percolation networks. "~' The only dif-
ference is that resistances along a chain are now

824



VOLUME 48, NUMBER 12 PHYSICAL REVIEW LETTERS 22 MARcH 1982

combined according to Eq. (2), rather than according to the classical Ohm's law. Because of the ap-
proximate character of the transformation, the results depend somewhat on whether one renormalizes
resistances or conductances. " To facilitate comparison with the procedure of Refs. 16 and 17, I re-
normalize the (typical) dimensionless conductarice a of a random scatterer. In the limit b-l the two
recursion relations are

P' =P+ f [P lnP -(d -1)(1-P)ln(1 -P)],
a '= a —g(a(a + 1)ln(1+ 1/a') —(d —1)a' [1+p '(1 —p) ln(l —p)]).

(5)

For a»1 results of Refs. 16 and 17 are recovered. Since the "phase diagram" is conveniently plotted
and discussed in terms of p =1/a, rather than a, I rewrite Eq. (6) as

p'= p+ f((1+p)ln(1+ p) —(d —1)p[1+P '(1-P)ln (1-P)]).
The flow diagram generated by Eqs. (5) and (7),

with g = 0.02, at d = 3 is shown in Fig. 2. The
flow line connecting the two nontrivial fixed points—percolation fixed point (P„o) and localization
fixed point (1, p, )—represents the critical line

p, (P) [P, is the percolation threshold, p, —=p, (l)
is the critical resistance for macroscopically
homogenous localization]. This line divides the
P-p plane into three distinct regions, as suggest-
ed by Khmelnitskii": The region to the left of the

P =P, line corresponds to "classical" localization,
while the regions below and above the critical '

line correspond to extended and localized (in the
Anderson sense) states, respectively. Since the
critical flow line is directed from the percolation
fixed point to the (macroscopically homogeneous)
localization fixed point, it can be concluded that
percolation disorder (for p)p, ) does not affect
the exponents of the Anderson transition. It does,
however, affect the width of the critical region.
More work is needed to obtain quantitative infor-
mation about this effect, as well as about cross-
over phenomena near the percolation fixed point.
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