
VOLUME 48, NUMBER 12 PHYSICAL REVIEW LETTERS 22 MARCH 1982

Office of Naval Research, and the V. S. Army
Research Office. One of us (H.E.S.) thanks the
Guggenheim Foundation for a Fellowship.

S. R. Broadbent and J. M. Hammersley, Proc. Cam-
bridge Philos. Soc. 53, 629 (1957).

~J. L. Cardy and R. L. Sugar, J. Phys. A 13, L423
(1980).

3F. Schlogl, Z. Phys. 253, 147 (1972).
4S. P. Obukhov, Physica (Utrecht) 101A, 145 (1980).
5J. Kertesz and T. Vicsek, J. Phys. C 13, L343

(1980).
W. Kinzel and J. M. Yeomans, J. Phys. A 14, L163

(1981).
S. Redner, J. Phys. A 14, L349 (1981); S. Redner

and A. C. Brown, J. Phys. A 14, L285 (1981).
W. Klein and W. Kinzel, J. Phys. A 14, L405 (1981).

~J. W. Essam and K. De'Bell, J. Phys. A 14, L459
(1981).
' D. Dhar, M. Barma, and M. K. Phani, Phys. Rev.

Lett. 47, 1238 (1981).
E. Domany and W. Kinzel, Phys. Rev. Lett. 47, 5

(1981).

We adopt the conventions of Ref. 11 other conven-
tions exist in the directed-percolation literature.

~3H. Minkowski, Gesammelte Abhandlungen (Chelsea,
New York, 1967).
'4F. Sheid, Mathematics Teacher 54, 307 (1961).
"M. Gardner, Sci. Am. 243, No. 5, 18 (1980).
~60ther conventions (such as the order of diagonal,

vertical, and horizontal) may lead to a trap, " even
though the configuration is percolating.

' See, e.g. , E. W. Montroll, in App/ied Combinatorial
Mathematics, edited by E. F. Beckenbach (Wiley, New

York, 1964), Chap. 4.
Note that our analysis does not involve the cancella-

tion of large factors and the use of the Stirling approxi-
mation; it is always tricky to perform such cancella-
tions when the end result is a number of the order of
magnitude of unity (cf. the discussion in Ref. 11 follow-

ing Eq. (8)).
~~The result v = 2 was also recently obtained with use

of position-space renormalization-group arguments
(W. Klein, to be published).

B. C. Harms and J. P. Straley, Directed percola-
tion: Shape of the percolation cone, conductivity ex-
ponents, high dimensionality behavior, and the nature
of the phase diagram" (to be published).

Stationary System of Two Masses Kept Apart by Their Gravitational Spin-Spin Interaction

W. Dletz
Institut fur Astronomic und Astrophysik der Universita't &iirzburg, D-8700 Wurzbur g,

Federal Republic of Germany

and

C., Hoenselaers
Max Planck Institut -fur Phy-sik und Astrophysik, D-8046 Garching bei Munchen, Federal Republic of Germany

(Received 23 November 1981)

An exact vacuum solution of Einstein's field equations is presented, describing two
isolated bodies balanced by their gravitational spin-spin interaction.
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It is well known that Curzon's static bipolar solution of the Einstein field equations' which describes
the axisymmetric gravitational field of two separated masses fails to satisfy the condition of elementary
flatness on the part of the axis between the two masses. In physical terms this can be interpreted as
meaning that the masses are held apart by a strut. "With the recently developed techniques for gener-
ating stationary axisymmetric solutions from static ones, the question arose whether it is possible to
stabilize two masses by addition of angular momentum. This is indeed the case.

The metric for space-time has the usual form

ds' =f '[e'I(dp'+dz') +p'dy'] -f (dt —~dy)',

and Curzon's bipolar solution for equal masses is given by

1 2

fo= e"=2exp[-4mx/( r-sy)]2, yo=-m', z [(v' —1)(r +6x'y2+y')+(x'2-y ) ], =0,
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where the Weyl coordinates (p, z) and the prolate spheroidal coordinates (x',y) are mutually related by

p'=(x'-l)(1-y'), & =xy.

pp ls only fixed up to an additive constant.
With this solution as seed metric we have used bvo Hoenselaers-Kinnersley-Xanthopoulos (HKX) rank

0 transformations (see HKX' for details) to derive the Ernst potential

e =emxZ/N; Z =1+x B B 2 2 2 +i(1-x)j[ B, 2 B-(1 -x)'(1-x') . ' 1+y 1-y
-y +y

[' 1+xy x
N(x,y) =Z(-x, -y), B, =exp —2m

I 2 +
l

~

((x +y) x +yj

The parameters ~„~„u„u2of the HKX transformation have been chosen as ~ =&, =&„u1
For this Ernst potential the metric is given by

f A/[A+2(G+Hcosr+1 sinr)], v =-A '(R+Qcosr —P sinr)+k, e'& =A exp[2(y, —y)],

with the functions

A =e~" Re(ZN+), 2I =e2" Im(ZN*), 4H=NN* —e "ZZ*, 4G =NN~+e4"ZZ*- 2A,

and

R=a ' [()+x)(1-y)-e4"(1—x)()+))]+ [(1+@){)+y)-e"(1-x)()-y)]}
I' B, 4X
X —g x+y

-z'B,B, , ', [(1+x)'(1-y) -e'"(1-x)'(1+y)]+,[(1+x)'(1+y}-e4" (1 -x)'(1-y}],

Q B(e4x e4x)

X2 —1 4

2
p

2

Moreover, ~ denotes the parameter of an Ehlers
transformation, which is still available, and k is
a constant of integration.

For the following calculations the axis outside
the two objects located at x =+ 1, y =1 is described
byx =+ 1, y ~1 whereas the inner axis is given
by x~ &1, y= 1. The parameter ~ of the Ehlers
transformation is fixed by the choice

As a consequence ~ takes the form

(d =-A '(R -P)+4k. ,

where the constant k has been chosensuch that (d(y
—~) =0. This guarantees asymptotic flatness and,
moveover, that the axis outside the two objects
is regular which means that ~l„„,„,=0. On the
inner axis we obtain

x~~1,y=x

4 2m

'n+ [(n1+m)e ' —1]-me 2"),

where the rescaled parameter

is used. Hence one condition for regularity is

n'+n[(1+m)e "-I)—me ' =0,

which also ensures the vanishing of g«on the
axis. Elementary flatness on the axis requires

lim 2 =lime 2& 1—
p OP gpp p~O — P

With condition (2) it can be seen that &u= (y —1)
&~,(x) for y = 1 and hence lim~, f~/p =0. Thus
we get from (1) and (3)

lime 2r =exp(-2m )(1 —n ) 2,
y 1

where we disposed of the free additive constant
in z, by requiring z, (x =+ 1) =0, equivalent to the
rescaling yo+m'- y, . Demanding this expression
to be 1 we obtain the second equation

exp(m') =(1-n') '.
It follows immediately that the real parameters
n lie in the open interval (0, 1).

It remains to show that the equations (2) and (4)
are consistently solvable which is equivalent with

779



VOLUME 48, NUMBER 12 PHYSICAL REVIEW LETTERS 22 MARcH 1982

the existence of two numerical values &, and [see (4)1 m, =I (&,) fo» and I such that the functio~

E(n) =n +n([l +[- ln(l —u )]"2].exp/- 2[- ln(1 —n2)]"2j —1) —[- ln(1 —u2)]"2 exp(-2 [- ln(1 —ns)]'

possesses a zero at the point n, E (0, 1). For Q.

«1 we find that the function E(n) is negative be-
cause E(g «1) =- & +O(u') ~ On the other hand,
we obtain positive values for E(n) for n& 0.97
such that the existence of a zero of E(n) in the
interval (0, 1) is ensured.

The two numerical values &, and m. (up to four
decimal places n, =0.9635 and m, =1.6235) deter-
mine uniquely a one-parameter family (this pa-
rameter is the focal length of the prolate spheroi
dal coordinates which we have normalized to
unity) of stationary, axisymmetric, asymptotical-
ly flat gravitational fields, describing two objects
with positive mass M =2m, exp(2m, ) rotating in the
same direction and balanced by their gravitation-

~ al spin-spin interaction.
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