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Spin-Glass Behavior in Frustrated Ising Models with Chaotic Renormalization-
Group Trajectories

Susan R. McKay and A. ¹hat Berker„
Department of Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02189

and

Scott Kirkpatrick
IBM Thomas J. +'atson Research Cente~, Yoyktoson Heights, New York 10598

(Heceived 30 December 1981)

Competing ferromagnetic and antiferromagnetic interactions are studied in hierarchical
Ising models, which are exactly solvable with nonclassical phase transitions at finite
temperature. As model parameters are changed to increase frustration, a spin-glass
phase is entered with chaotic renormalization-group trajectories. At successively long-
er distances, strong and weak spin correlations are encountered in a chaotic sequence.
A microscopic description of a spin-glass emerges, with noncontiguous spins mutually
pinned within distinct infinite subsets.
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The presence of frustration' should be essential
to unusual cooperative behavior in spin-glasses, '
since otherwise a gauge transformation recovers
an ordinary uniform system. Thus, highly frus-
trated, but not necessarily random, systems
have been the subject of several studies. ' The
present work considers hierarchical Ising mod-
els4 which are frustrated at every length scale.
A microscopic characterization of a spin-glass
phase emerges, from chaotic renormalization-
group trajectories.

The hierarchical models" are exactly solvable
models of spins on lattices which are not transla-
tionally invariant. They can exhibit nonclassical
phase transitions at finite temperatures. A sim-
ple example is shown in Fig. 1(a), in which each
bond inside the unit in the center is itself actual-
ly an entire such unit, and the process is con-
tinued ad infinitum. The exact renormalization-
group transformations for certain hierarchical
lattices are algebraically identical to approxi-
mate renormalization-group transformations for
Bravais lattices, such as the Migdal-Kadanoff
bond-moving, ' Kadanoff variational, ' and Niemei-
jer-van Leeuwen cluster' schemes. Thus, these
are "realizable" approximations and therefore
must satisfy basic thermodynamic expectations.
Similarly, the present work can be viewed as an
exact study of frustration on rather uncommon
lattices or as an indirect approximation to frus-
trated spins on common lattices.

The models analyzed in detail are constructed
from the units in Figs. 1(b) and 1(c). Each site i
is occupied by a spin 0,-=+1. The straight lines

represent couplings P3C;, =-Kcr, v., , with K ~ 0.
A wiggly line represents an infinite antiferromag-
netic coupling, and has the sole effect of revers-
ing the sign of E on the bonds adjoining on one
side. This is a convenient way of introducing
competing ferromagnetic and antiferromagnetic
interactions, enabling us to work with one-param-
eter recursions. Inside the unit of Fig. 1(b), p
bonds are in parallel. This unit is totally frus-
trated. When p„such units are combined in

parallel to construct a hierarchical model [Fig.
l(d) with p, =OI, an ordered phase occurs only at
intermediate temperatures. As the system is
cooled (K '-0), a phase transition occurs from
the paramagnetic phase to the ordered phase.
Vpon further cooling, total frustration effects
dominate, and another phase transition occurs
from the ordered phase to a reentrant paramag-
netic phase, ' which persists to zero temperature.
In the unit of Fig. 1(c), at low temperatures, the
couplings of the shorter (m, &m, ) strand dominate,
and the longer strand is frustrated. One of the
bonds in the longer strand must be dissatisfied,
which gives a ground-state entropy of lnm, . At
such low temperatures, the spin correlation is
still propagated across the unit, although not as
the total pinning of ordinary magnets, because of
the frustrated longer strand. By contrast, no
correlation is propagated at low temperatures
across the unit in Fig. 1(b), which produces the
reentrance.

A family of hierarchical models is constructed
a,s in Fig. 1(d), taking in parallel p, units of Fig.
1(b) and p, units of Fig. 1(c). We define the
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FIG. 1. The construction of hierarchical models.
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0.03—shortest path across this composite unit as the

length rescaling factor of the corresponding re-
normalization-group transformation, b = 2. The
volume rescaling factor is as usual the ratio of
the numbers of old and new bonds, b~= (4+p)p,
+(m, +m, )p, . This leads to a defined effective
dimensionality d. The average coordination num-
ber is
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1.0 3.0although smaller and smaller numbers of sites
have larger and larger coordinates, a property
of hierarchical lattices.

The recursion relations of the corresponding
exact renormalization-group transformation are
obtained by summing over the internal spins
(black circles in Figs. 1) of a composite unit.
Thus, with t= tanhK and t-=—tanh(pK),
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FIG. 2. Renormalization-group topologies as Hamil-
tonian parameters are scanned. Some of the stable
(unstable) fixed points and cycles are shown with full
(dashed) lines. Initial bifurcations are noted by tic
marks on top of figures. The bigger mark indicates
the onset of chaos. Some of the chaotic bands are
shown by the vertical segments. The dots illustrate
6x 2, Sx 2' cycles in between chaos. Arrows depict
renormalization-group flows. The lowest dashed
curve is t&*.and

K'=p, tanh 't~+p, (tanh 't '-tanh .'t 2)

for the nth renormalization-group iteration. This
quantity converges after many rescalings, giving
the free energy per bond of the original system.

We fix the parameters p = 4, p, = 1, and m, = m2
+1, and present results as p, or m, is scanned,
increasing frustration. Figure 2(a) depicts the
renormalization-group flows as p~ is scanned
with m, = 7. A stable fixed point always occurs
at the decoupled system t ~ = 0 and is the sink of

! the paramagnetic phase. An unstable fixed point
occurs at finite coupling t~* and gives a second-
order transition between the paramagnetic (t & t~*)
and ordered (t &t~*) phases. The sink of the
ordered phase occurs at stronger coupling. The
fact that this sink does not occur at infinite coup-
ling t = 1 reflects ground-state entropy. The
novel aspect is the way in which this ordered
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give the renormalized bond strength K'. The contributions to the free energy from the smaller length
scales, which have been traced out by the renormalization transformations, are kept as an additive
constant per initial bond to the Hamiltonian —PX. The recursion for this constant is

G'= Gb+" [2p~ +(m +m, -2)p, ]ln2+ ' ln» +~]n1-t''1-t ' 2
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sink changes as frustration is increased. At low

p„ it is a single stable fixed point. At p, =p, (2')
=17, a period doubling" occurs, giving way to a
spiral-unstable fixed point and a stable period-2
limit cycle. At p, (2') =26, another period dou-
bling occurs, giving way to a spiral-unstable peri-
od-2 cycle and a stable period-4 limit cycle. The
period-doubling casease proceeds as described
in nonlinear mapping contexts. " The rate of bi-
furcation

[p, (2 ) -p, (2-))i[p, (2 ")-p, (2 ))

converges to 4.669. .. as l —~, as predicted by
universality. " The onset of chaos" is at p~(~)
=31. Beyond this value, chaotic bands are en-
countered [ Fig. 3(a)] which proceed to merge
into an eventual single band [Fig. 3(b)], inter-
rupted by small windows of 9 x 2', 6 & 2', etc.
cycles. Similar behavior is exhibited in Fig. 2(c),
where m, is scanned.

A microscopic interpretation can be given to a
chaotic renormalization group. Consider an ini-
tial condition in the low-temperature, high-frus-
tration regime. After some renormalizations,
the trajectory is confined to the chaotic band.
Then, after the n, th renormalization, the trajec-
tory will be at a strong-coupling region K "~)

»K~* of the chaotic band. After a few more re-
normalizations, the trajectory will be at the
weaker-coupling K~"2) -Kc* region of the band.

After still a few more renormalizations, it will
return to the strong-coupling region K "3)» E~*.
Thus, the effective coupling, and therefore the
correlation, is strong between spins separated
by a length scale b"~ or b"~, whereas the corre-
lation is much weaker between spins separated
by b"2. As we view successively longer length
scales using the renormalization group, we en-
counter strong and weak correlations in a chaotic
sequence. This implies infinite subsets of non-
contiguous spins which, within each subset s, are
strongly pinned to each other. The ordering of
each subset, M, =Q, ~, (-l) ~~ o,. =~M, is the or-
dering of the spin-glass phase. The disorder of
the different subsets with respect to each other,
and the internal disorder of the finite subsets,
provide the entropy of the glass phase. Such non-
contiguous pinning has independently been seen
in recent Monte Carlo simulation. '

In an actual sample, frustration is due to a
quenched random spatial distribution of competing
interactions. Because of this spatial disorder,
different localities will be out of phase with each
other with respect to the evolution of local eoup-
lings within the chaotic band, under rescaling.
The random noise, introduced into the renor-
malization mapping by the quenched disorder,
should wipe out the limit cycles, whereas the
chaotic behavior is stable to such noise. " A

better position-space renormalization-group ap-
proximation for a spin-glass on a more realistic
lattice would involve trajectories in many-pa-
rameter space, again opening an avenue for
reaching the chaotic regime without period dou-
bling.

The new renormalization-group behavior de-
scribed above occurs at the sink of the low-tem-
perature phase. Indeed, the character of the
sink (e.g. , chaos) should epitomize the entire
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FIG. 8. Number of visits per bin ~t =0.05, for 5000
chaotic iterations starting at t' = 0.5. The value of p&
is 40.

FIG. 4. Phase diagrams deduced from Figs. 2(c)
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thermodynamic phase (spin-glass) which is the
basin of attraction. In the present work, the
phase transition occurs via a standard unstable
fixed point Kc*, although in many-parameter
renormalizations, this could change. The con-
tinuum of phase-transition fixed points seen in
Figs. 2, between the paramagnetic and spin-glass
(chaotic) phases, gives specific-heat exponents
u between -6.4 and -6.7. This corresponds to a
smooth specific-heat signal at the transition,
which agrees with spin-glass experiments. '

We have presented exact solutions of frustrated
hierarchical models that exhibit chaotic renor-
malization-group trajectories at large frustra-
tion. Thus, a microscopic description for spin-
glasses is suggested, and phase diagrams are
obtained with the expected topology" of paramag-
netic, ferromagnetic, and spin-glass phases
(Fig. 4).
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