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Periodic Spinodal Decomposition in Solid and Fluid Binary Mixtures
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Periodic spinodal decomposition can be realized by changing the reduced temperature
periodically. Experimental predictions are made for solid and fluid bi»~y mixtures.
The scattered light (or neutron) intensity is shown to be much enhanced as a result of
periodic formation of domains. A phase transition is also discussed, which occurs as
the average temperature is lowered with a fixed size of the temperature vibration.

PACS numbers: 64.60.Ht, 64.70.Ja

In previous papers' nonlinear effects of strong
sound waves were examined in the neighborhood
of second-order phase transitions. There, the
temperature difference T —T, is assumed to be
oscillating with a frequency 0 as

T —T, = &T, + T, cos(Qt —Kx),

where 4T, is the average of T —T„Ty ls a posi-
tive constant, and T, is the equilibrium critical
temperature. Note that T —T, can be made oscil-
lating by various other methods, for example,
by application of periodic pressure or periodic
magnetic field.

We are interested in the case
~ hT, ~

& T,. Here
the system is unstable periodically when T —T,
becomes negative. This results in enhancement
of the critical fluctuations with sizes greater
than a characteristic length $, defined by $,
= $,(T,/T, ) ", where $, and v are determined by
the relation for the equilibrium correlation length

$ = $ (o&T /T, ) ". The fluctuations with wavelengths
greater than g, can be enhanced by the periodic
quench, whereas those with wavelengths smaller
than (, are little affected. The degree of the en-
hancement is represented by the dimensionless
number

ters. The former processes occurs while T &T,
and the latter one while T & T,. If the clusters are
destroyed almost completely while T & T„ the
process of phase separation must be stopped and

the system will tend to be in a periodic state.
However, if the average temperature &T, is
lowered gradually, the decay mechanism be-
comes ineffective and the clusters will be only

partially destroyed. Then, the phase separation
wi11 proceed without limit.

In this Letter I propose experiments of periodic
spinodal decomposition in solid and fluid binary
mixtures. ' 4 For solid mixtures the time scale
of the phase separation is very slow and suitable
experimental co'nditions will be simply realized
by changing the temperature macroscopically.
For fluid mixtures the critical temperature T,
can be made to oscillate by periodic pressure.
Let us consider a critical binary mixture of iso-
butyric acid and water as an example. In this
fluid T, depends on the pressure as dT, /dp
=-0.05 mK atm '. Here the changes in the tem-
perature and the critica1 composition are negli-
gible. ' If p, is the magnitude of the pressure
vibration, then

p =(ks /T16g) $o '(T,/T, )'"/0=Cy, /0,

where I', —= r($, '), I'(k) being the order parame-
ter decay rate with wave number k, z is the dy-
namic critical exponent, and y, is a constant.
This number is the ratio of the period of the
quench to the time scale of the growing fluctua-
tions. For p. & 1 strong enhancement of the fluctua-
tions occurs, while for p«1 the period of the
quench is too small to produce significant nonlin-
ear effects. However, if p, is too large, the sys-
tem reaches the final stage of the phase separa-
tion in a time interval with negative temperature.
Then the process becomes rather macroscopic.

In our problem there are two characteristic
processes, the formation and the decay of clus-

where 7l is the shear viscosity, T, —=
~ dT, /dp ~p„

and C„=1.5X10' with p, in atmospheres and 0 in

hertz. For example, if p, =0.2 atm and 0=1
sec ', we obtain Ty 10 mK and p, =7.2.

I present some numerical results for the peri-
odic quench at the critical composition. They
have been obtained with a computational scheme
of Langer, Bar-on, and Miller (LBM)' for the

solid case and that of Kawasaki and Ohta (KO)'
for the fluid case. The KO theory takes into
account of the hydrodynamic interaction by graft-
ing mode coupling onto the LBM scheme.

For the solid case the correlation function of
the Fourier component of the concentration
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c(r, t) obeys the equation' 02 04
I

0.6 08

—S(t) =-2Lk ik +A(f)]S,(f)+2Ik',
Bg

where I- is e ith k'netic coefficient and A(t is
given by

A.(f) =~(t) + —(c(r, f)') /(c(r, f)' . (4)

t =20 and 0=0.7.FIG 2 Sn ) for solid mixbxres a p, —
The (a„)remain negative.

less units. Then (3) becomes

—S(q, ~) = -q'[q' a+(T)] S(q, T) +q',t

T - T and will be assumedHere r(t) represents T-
-wise oscillationto be undergoing a step-w'

r(f) =r, I c+I"(t/f, )],
e r is the magnitude of the oscillation, r, o

is the averag,er e andEx isase-
—-1 &x ~n+ —' andfunction defined as ., —-1 &x n

=1 for n+ —,'&x ~n+1 with n integr
is ' 'llation. In this caseis the period of the osci agp ls

it is convenient to redefin p.e as p. =Lr, 'Ip. I
( t) consists of Fourier compo-assume that c~r,

numbers smaller than
=—r ' ' since the fluctuations with wave num

'ttle affected by the oscilreater than k, are li egr
k, '

oughly the inverse of $, .
t *=/k,

Note that k, is roug
The dimensionless coupling con

e 21.8." The equation for theis assumed to be 2 . . '
' t distribution function p, c» I,one -poin is

'mat' it as a sumf ) -c,) ) is solved by approxima ing i
of displaced Gaussians.

er =k/e a dimensionless wave number q=
—2 4k dimensionless time 7 =cs

ss structure factor S q, T, =S (t)k, . e
2

' thperio od of the oscillation is p. in

~ iqk '. At 7 =0 I assume that S(q,where a(T) =A t k, .
Q q2= I '+ I).

e S T) and a T osci a'llate rapidly in each
1 and 2 the following av-eriod I plot in Figs. 1 an

i I I

-o.8'-o.)~.b-o.5-o.~ -0.3 -o.2 —o] 0 o.3

FIG. 3. a vs 0 for solid mixtures.
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eraged quantities up to n= 30: a 0.2) or for short-time quenches (for p & &0) the

S„(q) have only one peak. When o is greater than

a critical value v„S„(q) tend to a limit which
assumes the Ornstein-Zernike form (q'+a„) '
at small q, where a„=lim„a„. At 0=v a
=0

n ~ n ~
—~c~a

This is because the long-wavelength fluctua-
tions cannot change appreciably in one period and

can see only the average of a(r) S.(q, T) also
tends to a periodic function as &-. For o &o

t
CS

he S„(q) continue to grow. I display a„versus
v in Fig. 3, which shows that 0, = -0.47, -0.57,
and -0.73 for p, =10, 20, and 40, respectively.
Note that a(T) behaves almost periodically after
several periods for o&o„so that a can be de-
termined precisely.

For the fluid case S(q T) obe s the e u ion'

S„(q) = f dqS(q, q),
2& 2(~-i~p

1 2np
ll dna(T) .

2(n-1) p

&s a typical feature S„(q) has two peaks. This
means that there are two types of clusters. The
smaller ones are created and destroyed in each
period, but a part of them survive to grow into
the larger ones after several periods for nega-
tive o. However, for shallow quenches (for o

(6)

y qat

S q, 7. q'[q'+a(T)]S(q, ~)+q'+-q' f dms(q/m)[S(m, ~) -S(q, T)+(m'-q')S(m r)S(q T '

where

Here p and ~ should be redefined as p, =(kBZ'/
12~+qk, 't~ and ~ = (k, T/6~3gk, 't, For v & cr„ the

S„(q) tend to a limit which may be represented bne y
,~~@ +~„j~at small q, as is shown in Fig. 4.

Strikingly, z ' is much smaller than a and ap-
pears to be of order a„. For example,
=0.024 and a„=0.15 at p, =5 and 0=-0.2. We

t cannot find two peaks in S„(q) for 3 p ~60 al-
though S(q, ~) has two peaks in some time regions.
This is probably because the hydrodynamic inter-
action gives rise to an anomalously large renor-
malization contribution to the transport coeffi-
cient, 'which may be expected to be of order ~
F

OO ~

or v&o„ the S„(q) continue to grow, as is
shown in Fig. 5.

In this Letter I have found a new phase transi-
tion, which occurs when a is lowered with p,

fixed. For o &0, the clusters remain finite and

the system is in the disordered phase. For 0&a,

os osO

pIG. 4. S„(q) for fluid mixtures at p =5 and 0 =-0.2.
In the inset 1/S„(q) are displayed vs q 2. In this case
the system tends to a periodic state.

0 04 0.6 0.8

FiG. 5. S„(q) for fluid mixtures at p = 5 and c'= -0.32.
fn this case the intensity grows indefinitely.
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the clusters grow and the system will be sepa-
rated into two phases ultimately. However, we
do not know the precise nature of the transition.
It might be of first order. That is, the average
concentration might jump discontinuously just
below the transition. If this is true, the values
of o at which lim, , lim, „S(q, T) diverges should
correspond to the limit of metastability, although
these values have been regarded as the critical .

values in this Letter.
Finally it should be remarked that the results

of this Letter are based on the LBM approxima-
tion and cannot be conclusive. Their verification
(or modification) should be made in future theo-
ries or experiments.
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Second Zone in Ionic Solutions
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High-resolution incoherent neutron spectroscopy has, for the first time, been applied
to aqueous solutions and has demonstrated unambiguously the existence of a second zone
of weakly interacting water molecules around two divalent cations ¹i~+and Mg2+.

PACS numbers: 61.25.-f

In an important paper published some 20 years
ago, Frank and %en' postulated that around ions
in aqueous solutions two well-defined zones of
water may exist. The first zone, the so-called
primary hydration shell, is now established be-
yond any doubt. "The dynamical behavior of
weakly interacting water mol ecules like those in
the second zone, however, is not amenable to
conventional spectroscopic investigations. ' To
use incoherent quasielastic neutron spectroscopy,
for example, two stringent criteria must be met.
First, k [(momentum transfer)/h) values must
be such that

Dk' 78&&1,

where D is the translational diffusion coefficient
and Te is the correlation time for rotational mo-

tion of the hydrated ion; for ve-10 "sec, and
D-10 ' m' sec ', k«1A '. Secondly, the re-
quired observation time of the experiment ~

(10 ' sec) implies an instrumental energy reso-
lution of 1 p, eV. Under these conditions the ob-
served self-scattering law S(k, ~) will be Lorentz-
ian in character and will, for ionic solutions in
light water, be dominated by the hydrogen term,
S„(k,m) given by

S„'(k,u ) = (1/~)Dk'/[(J)k')'+(u'],

if on the time scale of the experiment there is
just one population of water molecules (the so-
called "fast-exchange" limit). The backscatter-
ing technique as exemplified by the instrument
IN10 now available at the Institut Laue Langevin,
Grenoble, allows data to be collected under the
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