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It is proved that under any time-periodic Hamiltonian, a nonresonant, bounded quan-
tum system will reassemble itself infinitely often in the course of time. To illustrate
t}mse results computer experiments are performed on both a pulsed quantum rotor and
an electron in the field of periodic electromagnetic pulses.
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I ittle is known about the time evolution of quan-
tum systems with nonstationary Hamiltonians.
And yet this question is of relevance to a host of
problems that range from laser photochemistry'
to the dynamics of electrons in very small struc-
tures, ' where perturbation treatments are seldom
suitable. On a perhaps deeper level there re-
mains the question of the behavior of quantum
systems whose classical counterparts are known
to display chaotic behavior, a problem which has
been recognized since the early days of quantum
theory. ' Although for time-independent Hamilto-
nians there exist a number of theoretical re-
sults, ' for nanstationary Hamiltonians we pos-
sess fewer answers. In particular, recent work
by a number of authors' "has indicated the pos-
sibility of quantum chaotic behavior which can be
characterized by either decay of correlation func-
tions or diffusive energy growth. Since most of
these predictions are based on limited numerical
calculations, it is desirable to obtain some gen-
eral theoretical results which can in turn be used
to both interpret Bnd predict experimental out-
comes.

This paper reports the results of such a theory
and illustrates its implications for some con-
crete problems with numerical experiments. In

particular, we prove that under any time-period-
ic Hamiltonian, a nonresonant, bounded quantum

system (i.e. , a system with a discrete quasiener-
gy spectrum) will reassemble itself infinitely of-
ten in the course of time. This in turn implies
that no strict quantum stochasticity is possible,
a result which disagrees with recent predic-
tions. ' " Furthermore, we perfarm computer
experiments on both a pulsed quantum rotor and
an electron in the field of periodic electromag-
netic pulses, problems illustrating our rigorous
results.

Consider any bounded quantum system de-
scribed by a Hamiltonian Kp that has a discrete
spectrum, and subjected to a nonresonant time-
periodic potential V with V(t) =V(t +T) for an ar-
bitrary'period T, and such that IIVII (Ref. 12) is
bounded. We will now prove that given any initial
configuration of the system, bath the wave func-
tion and the energy return arbitrarily close to
their initial values infinitely often. More gener-
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II +«+ &) —+(t)ll'= la(t+ ~) —a(t)l', (2)

where we have defined (~4'(t)~~'=—f dr~4'(r, t)~'. Fur-
thermore, if H(t) =H(t +T) the wave function sat-
isfies a Floquet theorem, i.e., a(t) is of the form

a(t) = g n, exp[iE, t/m]e„(t),
k= 1

with e, (t+T) =C, (t), e, ~(t)C, , (t)=b„,, for all t."
The set (E„}is called the quasienergy spectrum
If we write n„as a„=r„exp(ip~) with r„and p„
real, it follows from Eq. (3) that

I a(t +NT) —a(t)l'

=2+ r, 1 —cos2 Ek NT

k=1
(4)

for any integer N. Since the wave function is nor-
malized, we have Q„",r„'= la(t)l' = ll+(t) II'= 1,
an equality which implies that given e &0 there
exists an integer n(e) such that Q~" „+,r„' & e/8.
We can then write the following inequality:

r„' 1 —cos ' & 2 P r„'&e/4. (5)
k=n+1 k= n+1

We next consider the function f (x) =g~,[1
—cos(E„xT/h)] ~ 0. By our definition of nonreso-
nance the eigenvalues E, are discrete so that this
is a finite sum of periodic functions, and there-
fore for any 5 & 0, the set of integers (N, }such
that If (x+N~) —f (x) I & 0 for all x is relatively
dense. " In particular, for 5 = e/4 and x =0 there
exists a relatively dense set of integers (N} such
that f (N) & e/4 and since each r, & 1, we have

1 —cos & e/4.Ek NT
k= 1

ally, if we define an almost-periodic function,

f (t), to be a continuous, bounded function such
that for any e &0 there exists a relatively dense
set f~, }"and for each 7, in the set we have
If (t+~,) —f (t)l &e for all t, our theorem states
that both the normed wave function and the ener-
gy are almost-periodic functions of time.

We start by proving almost-periodicity of the
wave function. Consider the time-dependent
Schrodinger equation ih84'/Bt = [H, +V (t)]4. En an
expansion of the wave function, 0, in terms of
the complete orthonormal set of eigenstates of
H„(u (r)}, as 4'(r, t) =g —,a (t)u (r), the co-
efficients a (t) make up a vector a(t) which sat-
isfies

iha(t) =H(t)a(t)

and we can write

Combining this result with Eqs. (5), (4), and (2),
we obtain

ii e(t +NT) e-(t)II; & e (6)

for all times t and for a relatively dense set of
times (NT }.

Having proved the reassembly process for the
wave function, we now proceed to prove that the
energy will also recur infinitely often with arbi-
trary accuracy. The time evolution of the energy
is determined by E(t ) =(@IH(t)14') =a~Va, and so
a simple integration gives

E ( t) =E, + f 'a~(t') V(t')a(t')dt'. (7)

From the first part of our theorem, we know
that the vector a~(t) is almost-periodic and that
V (t) = V(t +T). Since in addition we have assumed
IIVII to be bounded, V(t)a(t) is an almost-period-
ic vector. Therefore the integrand of Eq. (7), be-
ing the product of two bounded almost-periodic
vectors, is itself an almost-periodic scalar. Be-
cause we have excluded resonant growth of the
energy, and because the integral of an almost-
periodic function is almost-periodic if bounded, "
it follows that the energy is an almost-periodic
function, i.e.,

IE(t+~) -E(t)l &e (8)

for all times t with fr} a relatively dense set.
This completes the proof of our theorem. "

In order to illustrate these results, we studied
two different quantum systems. The first is the
quantum version of a classical nonintegrable sys-
tem which exhibits large-scale stochasticity for
some values of a control parameter and which
has been claimed to exhibit diffusionlike behavior
for the energy in the quantum limit. ' The Hamil-
tonian for this periodically kicked rotor is

H =P9'/2I —&u, I cos& g 5(t/T —n),

to obtain the map

a„(t+T') = P a„t()b„„(h)e x(p-ir ~/2), (10)

where 0 is the angle, I'e is the angular momen-
tum, I is the moment of inertia, and the delta
functions are understood to be the limit of very
narrow Gaussian pulses.

Following the technique of Casati et al. ' we ex-
pand 4 in terms of the eigenstates of HO=Pe'/2I
as

+(~, t) =(2m) ' P a, (t)e'"'
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where k =+,'IT/h, 7=AT/I, and b, (k) =i'J, (k) with

J, the ordinary Bessel function of the first kind
and order s. Using this map we have computed
the energy E (t) =P„"= (n'/2I)h'~a„(t)~' for sever-
al values of k and 7, checking the normalization
condition 5~ la„l = 1 to 16 digits at every iteration.
A typical result for E(t) is shown in Fig. 1,
where we show its time evolution in time units
of number of pulses for the case k =2.871, 7
=2.532 and with the initial configuration in the
ground state. As can be seen, the excursions in
energy are not only bounded but also recur many
times.

The second problem that we studied corre-
sponds to the dynamics of a bounded electron un-
der the influence of a periodic string of electro-
magnetic pulses. This question, which is rele-
vant to the behavior of electrons in very small
structures acted upon by either the electromag-
netic pulses of nearby switching elements or la-
ser radiation, has complicated dynamics in the
classical limit. Consider an electron in an infi-
nite square-well potential which is acted upon by
a set of electromagnetic pulses of strength e.
The Hamiltonian of the system is then given by

with m the mass of the electron, e its charge, p
its linear momentum, x its displacement, e the
pulse strength, and T the time between pulses.
As in the case of the quantum rotor, this problem
can be shown to satisfy the requirements of our
theorem since the norm of the dipole matrix is
finite.

80—

Proceeding as before, we constructed a quan-
tum map from which we computed E(t) as a func-
tion of both e and T for thousands of pulses. Al-
though a detailed account of our results will be
published elsewhere, the point to be stressed is
that the energy behaved very much as in the case
of Fig. 1; it both was bounded and recurred
many times.

The results we have just presented are relevant
to a large variety of quantum systems beyond
those explicitly treated here. In particular, we
should stress that, although for the actual con-
struction of the mappings discussed above we
used a single-electron Hamiltonian, our theorem
also applies to any bounded many-body problem. "
This in turn implies that predictions can be made
ranging from the behavior of molecules in the
presence of monochromatic radiation to the re-
sponse of very small metallic particles and elec-
trons in superlattice structures. " Furthermore,
we should mention that only part of the difference
between classical dynamical systems exhibiting
mixing behavior and the quantum analog can be
ascribed to the fundamental limitation set by the
finite value of Planck's constant on the decay of
the correlation function. Although limiting the
complexity that can develop in the wave function,
this mechanism itself does not quarantee that the
system will reassemble itself infinitely often.
More is required, as we have shown here.

One of us (B.A.H. ) has benefitted from many
discussions with B. Caroli, C. Caroli, B. Der-
rida, and D. Ruelle, and from the hospitality of
the Solid State Physics group of the Ecole Nor-
male Superieure in Paris, France, where part
of this work was done. One of us (T.H. ) would
like to thank the Xerox Palo Alto Research Cen-
ter for a predoctoral fellowship.
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FIG. 1. The expectation value of the energy in units
of S~/I as a function of time in units of the number of
pulses applied to the quantum rotor. The initial con-
figuration is the ground state; k = 2.871 and 7 = 2.532.
A total of 201 states were used, and normalization was
checked to within 10 '6
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A bifurcation diagram for a driven nonlinear semiconductor oscillator is measured
directly, showing successive subharmonic bifurcations to fl32, onset of chaos, noise
band merging, and extensive noise-free windows. The overall diagram closely resembles
that computed for the logistic model. Measured values of universal numbers are reported,
includirg effects of added noise.
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Our purpose is to report detailed measurements
on a driven nonlinear semiconducting oscillator
and to make quantitative comparisons with the
predictions of a simple model of period-doubling
bifurcation as a route to chaos, ' ' which stems
from earlier work in topology. There is sur-
prising agreement, lending support to the belief
and the hope that some nonlinear systems can be
approximately understood by a universal model,
as has been suggested by some experiments. "
This upsurge of interest in nonlinear behavior
has been triggered by the remarkable result that
deterministic computer iterations of such a sim-
ple nonlinear recursion relation as the logistic
equation

x„„=w„(1-x„)
yield exceedingly complex pseudorandom or chao-
tic behavior. " The results are best summarized
by a bifurcation diagram' '. a scatter plot of the

iterated value (x„) versus the control parameter
A., which shows that as A is increased fx„) dis-
plays a series of pitchfork bifurcations at A.„,
with period doubling by 2", n =1, 2, ... . These
converge geometrically, as X, -A.„~6 ", to the
onset of chaos at A.„where (x„)becomes aperiod-
ic; in the chaotic regime, A. &k„noise bands
merge and there exist narrow periodic windows
in a specific order and pattern. 4 This model is
quantified by universal numbers as n —:
=4.669. .. , and the pitchfork scaling parameter
o. = 2.502. . . , first computed by Feigenbaum.
Other universal numbers characterize the spec-
tral power density ' and effects of noise. '

Our experimental system is a series I-RC cir-
cuit driven by a controlled oscillator, described
by Lq+Rq+ V, = V, (t) = V, sin(2' t), where V, is
the voltage across a Si varactor diode (type 1N953
supplied by TRW Company), which is the non-
linear element. Under reverse voltage, V, =q/C,
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