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Scaling Eiluations from a Self-Consistent Theory of Anderson Localization
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The conductance of a disordered system of finite volume L (d spatial dimensions) is
calculated by making use of a recently developed self-consistent theory. Scaling equa-
tions are derived for the dimensionless conductance g and the scaling function p(g(L))
= d lngfd lnL is explicitly calculated for arbitrary dimension d. It is shown that the
theory obeys scaling in the sense of %egner, Thouless, and Abrahams et al,.
PACS numbers: 72.10.Bg, 71.80.+h

Some time ago Abrahams eI; al. ,
' using ideas

developed earlier by Thouless, ' proposed a scal-
ing theory of the Anderson transition in which
the dimensionless conductance g as a function of
a sample length L was assumed to be the only
relevant scaling parameter. In particular, the
limiting behavior of the scaling function P(g) was
found to be"

P(g) = =d-2 ——+0 —, .d lng o.
d lnL, g g'

Earlier Wegner4 had proposed a mapping of the
Anderson tight-binding Hamiltonian onto non-
linear a models, for which the equivalent of the
conductance obeys similar scaling equations. Re-
cently other field-theoretical calculations em-
ployed similar models to calculate the P function
perturbationally to higher order in I/g. "

Starting from a systematic investigation of in-
frared divergences in the extended-state pertur-
bation theory, we have recently derived a self-
consistent diagrammatic theory of the density
response function. " The idea of a self-consis-
tent formulation of the density response was intro-
duced earlier into this field in combination with
a mode-coupling theory by Gotze. '" Our treat-
ment' yields a lower critical dimension d = 2,
the results for the dielectric constant and the
frequency-dependent conductivity in d = 1 being
in good agreement with exact solutions for the
weak-coupling case.

In this communication we want to demonstrate
that the self-consistent theory may also be used
to calculate other quantities, 'e.g. , the (length-
dependent) conductance of a finite system of
length L.

For small frequency ~ and wave vector q the

density response function may be expressed in
terms of the diffusion coefficient D(q, &u) IEq. (30)
in Ref. VJ. We have previously derived a self-
consistent equation for D(@=0, ~) =D(~) by a
diagrammatic method (the q dependence of D will
be addressed in the context of dimensions d &2),
which may be written as'

2-d kp u"-'
D((u) =Do- " dk

(
.

/D( )J+k ' (2)

Here D„ the bare diffusion constant, is given

by D, =(& md'. ) ', where A. , the disorder param-
eter, may be expressed in the weak-coupling
limit by the transport relaxation time as X

=(2wBF~) '. Equation (2) essentially is an inte-
gral over a density relaxation function, "which
has a diffusion pole structure at least in the hy-
drodynamic regime k & I/l, where l is the mean
free path. It will later become evident, however,
that the contribution from higher momenta is
negligible for the calculation of critical proper-
ties.

For small frequencies cu the conductivity o(~)
is given by a(tc) =o,D(co)/D„where o, =e'(n/ m)v

(n, density; m, mass of electrons). In the insulat-
ing state the polarizability n(cu) defined by o(&u)

= -iso.(&u) is finite in the limit ~ -0 and hence
we expect D(cu) ~ -i~. The density response
function assumes a form describing exponential
localization, ' i.e.,

lim )((q, (u) = I q't'/(I + q'(') J )(,(q, 0),
tu ~0

where $ =lim„-, [-iu/D(~)] ' is the localiza-
tion length. Taking the limit u -0 in (2) we de-
rive the following implicit equation for the local-
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ization length:

log yg-1
1 = zd (k „()' ' dy

0 1+y'

Equations of the form of (2) and (3) have essen-
tially been derived in Refs. 9 and 10 within a
mode-coupling theory the difference, however,
being a,n additional factor (k/k F)' in the integra, nd.
Generalizing the mode-coupling theory such that
the exact crossing symmetry between the par-
ticle-particle (p-p) and the particle-hole (p-h)
channel in the case of time-reversal invariance
is satisfield, Prelovsek" obtained equations iden-
tical to (2) and (3) for small cu and q.

In our previous work' we had treated the prob-
lem only for d -2 dimensions, since in this case
the perturbation series contains infrared diver-
gences for arbitrarily small coupling constant A..
In higher dimensions the diffusion pole (&u+iDk') '
is removed by the Jacobian factor O' '. However,
as one approaches the Anderson transition by in-
creasing the coupling strength, the diffusion co-
efficient tends to zero. In this case the diffusion
propagator diverges in the limit cu -0 even for
finite momentum A. Thus the same terms in the
perturbation series which give rise to infrared
singularities for d - 2 will now also diverge. One
therefore finds that a diverging contribution is
once more provided by the diffusion pole in the
p-p channel (2k F singularity), which is due to the
crossing symmetry of the four-point function in
the case of time-reversal invariance. In general
there is also a contribution from the diffusion

pole in the p-h channel which we have identified
diagrammatically in Fig. 4 of Ref. 7. In that
paper we proved that the divergent terms in the
perturbation series arising in d ~2 from this set
of diagrams are cancelled in the weak-coupling
limit. More precisely, writing the divergent
expression due to the p-h diffusion poles as
Qzg(f)/(- jcu+Dk') this cancellation implies
lim

~
k

~

-,Z(k) = 0. Nonetheless, for D going to
zero (as one approaches the Anderson transition)
this expression will allow for a divergence for
nonce~0 k values. Gotze'" has shown that this
divergence gives rise to a metal-insulator tran-
sition and has given a detailed discussion of the
corresponding self -consistent mode-coupling
theory. Most recently both mechanisms have
been investigated simultaneously within the mode-
coupling theory. " The results indicate" that for
short-range potentials the p-h and p-p diffusion
poles give comparable contributions. However,
the dynamics near the Anderson transition is
found" to be governed by the p-p diffusion pole
(i.e., quantum interference effects). We have
independently reached the latter conclusion with-
in our diagrammatic txeatment by extending (2)
to contain also the contribution from p-h diffu-
sion poles. ' As we are indeed interested in the
scaling properties near the Anderson transition,
we believe it sufficient to keep only the p-p diffu-
sion contribution. Consequently we are again led
to the self-consistent equation (2) for the diffusion
coefficient D."

Rewriting (2) and performing the integral we
obtain

D(& ) dA k ' ' iu '"-"~' '&"& x' '
1 (4)

where b(~) —= !iD(~)k,'/~]' '. This expression de-
fines the critical coupling strength A. , =!(d - 2)/
dj(k, /k~)' ', such that D(0)/D, =I-A./A. , for A.

Equation (4) can be discussed for A. )& A. ,
and allows one to determine the critical exponents
s of the dc conductivity o(0) (namely s =1 for all
d) and v of the localization length ( for arbitrary
dimension d by explicit calculation of v(0) and $."
For 2 & d &4 one obtains v = 1/(d —2), i.e., the
results obey the scaling law s =(d-2)v first de-
rived by Wegner"; for d&4 we get v=2. These
values of s and v have been found earlier in Ref.
12. In d =4, however, we obtain" logarithmic
corrections to v = —,', in contrast to Ref. 12.

For b(~)»1, which always holds for small
enough ~ near the transition, " the upper limit in

D(ur) X A. -i(
D, Z, X, D(~)k, '

-(~-2)i2

where p = I (d/2) I'(2 —d/2). An essentially identi-
cal equation has recently been derived by Hikami'
using a. field-theoretical formalism (nonlinear o
model) and employing the renormalization-group
method. Indeed it can be shown directly" that
the frequency-dependent conductivity v(&u) ~ D(~)
as determined by the self-consistent equation (4),
close to the Anderson transition, has the scaling
form a(&u) ~ e ~ ' ~E(w/&u, ) as proposed by scal-
ing theory" where co, is a crossover frequency,

! the integral of (4) can be extended to infinity. For
2 &d(4 one therefore obtains"
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~, ~ !1—A. /A. , I
' '. Within a self-consistent

formulation a scaling relation of this form was
first derived in Ref. 9 for d = 3, where, however,
~. ~ !1-x/z, !'~'.

We now discuss the case of finite samples.
The mechanism causing localization, i.e., the
quantum interference of infinitely many succes-
sive impurity scattering processes, is still work-
ing in this case. However, the electron now has
a finite probability to reach the end of the sample
before it eventually turns back. This effect is
expressed by restricting the available diffusion-
mode wave vector to k & 1/L. We may therefore
calculate the length-dependent diffusion coeffi-
cient from (2), which is a momentum integral
over a correlation function describing the spatial
decay of density fluctuations, by introducing a
lower cutoff at k = 1/L. In the limit e —0 the
characteristic length is defined by (=lim, ( i&aj-
D) '~', the localization length. This length only
depends on microscopic quantities and, in par-
ticular, not on the length of the sample. We
therefore replace -iur /D by $

' in the denomina-
tor of the integral in (2), i.e., its value in the
infinite system. This is consistent with renor-
malization-group treatments" where i&a/D is-
found to be independent of I-. One therefore ob-
tains

(8)

We now proceed to calculate the dimensionless
conductance g, which according to Abrahams et
a/. ' is the quantity obeying scaling. A scalar po-
tential U(x) =eE(L -x), corresponding to an elec-
tric field E, gives rise to a change in density
5p(x), which in turn drives a diffusion current.

!
At the end of the sample (x =L) the current den-

sity is given by J=eD(L)[d(&p)/dx]„=~ which
must be equal and opposite to the electric cur-
rent. In calculating 6p from the applied potential
it is essential that the density response in the
localized regime is nonlocal, and

J =eD(L}I(d/dx) J dx' y(x -x') U(x')]„-

By Fourier transforming g(q, 0) one finds

x(x x ) +F[&(x -x'}—(2&) 'exp(- Ix -x'I /8J
where N F= [S,/(2&) ]mk F' ' and S, is the surface
of the d-dimensional unit sphere. Substituting
this into the exyression for J and subtracting (6)
and (3), the dimensionless conductance g(L) =(e'/
k) 'L' ' J/E is finally obtained as

g(L) =.,x"-'(1+x)e-"j ' "
d3 3"-'/(I+~'}, (7)

where we defined x = L/( and c„=(2/~) [S,/(2&)'J. "
One observes that g(L) only depends on a single
parameter, namely the scaled length of the sam-
ple; e.g. , for d=2 one obtains

g(L}=(2v2) 'in[1+($/L)2](1+L/g)e ~ ~. (8)

For A. &A., (and d&2) we find

g(L}=c,(d-2) '[1+ I(d/2)r(2-d/2)(L/])" ']
where the characteristic length $ is defined" in
analogy to the localization length, i.e., $ =k, '(1
-z/z, ) ' I'-'&.

Clearly, as g is a function of the single varia-
ble L/$ there exists a single-parameter scaling
equation. We may calculate the scaling function
P(g(L)) = ding/d lnL explicitly from (7):

P(g(L)) =d-2- ~

where x =L(g}/g and L(g) is the inverse function
of g(L), i.e., P is a function of g only. The most
interesting dimension is d = 2, where

(10)

It is also instructive to calculate P(g} for in-
finite sample length L but finite frequency &u, i.e.,
P(g(~)) = ding/din&a where" the scaling param-
eter is

g(~) =(e'/a) '5' 'v(~)-( i&a/~, ) ~'-'& '

and a, ~ $ ". For d =2 one obtains P(g(&u))=(l
+2w2g} '. We see that P(g(L)) and P(g(&u)) only
agree to lowest order (~ o-L '), i.e., for g —~.
Observe that the P function calculated in renor-

P(g}= -(v'g) ' —[1 —3/(2~'g) ]exp(-2~'g) +0(exp(-3~'g) ), g» 1,

lng+0(ln(lng ') ), g«1.
It is interesting to note that the scaling function
in d = 2 is nonanalytic for g- ~ (nonperturbative
contribution to P). Hence in a formal exyansion
of P(g) in powers of 1/g the coefficients of (1/g)",
n ~ 2, are zero. This is consistent with the find-
ing in Refs. 5 and 6, where it was shown that the
coefficient of the 1/g term' and even of the 1/g'
term' vanishes. For A. & A., one finds P(g) =d-2
—c~/g from the expression for g(L) below (8).
In Fig. 1 we have plotted P(g) vs lng for dimen-
sions d=1, 2, 3.
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thanks the participants of the workshop for nu-
merous, valuable discussions.
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FIG. 1. The scaling function P(g(L)) = d lng/d lnL
vs lng is shown for dimensions d = 1, 2, 3.

malization-group treatments' ' corresponds to
P(g(L)) rather than P(g(~)). From (9) one can
easily find the critical conductance g, at which P
vanishes for d &2 (i.e., at the Anderson transi-
tion, where $ —~). It is given by g, =c, /(d —2).
The slope of P(g(L)) at g, is therefore found to
be [dP/ding] =v '.

In conclusion, we have shown that a self-con-
sistent treatment of the Anderson localization
problem yields a dimensionless conductance g
which is a function of the reduced length variable
L/$ only. Here g obeys a scaling equation a.s
proposed by Abrahams eI; al. ' for all dimensions
d. The scaling function P(g) can be evaluated
explicitly. Our results from the self-consistent
theory are in agreement with exact results of
field-theoretical models that are thought to de-
scribe the same system and which assume scal-
ing.
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