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Character of the Ferromagnetic Transition in Fe and Ni
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The magnetism of Fe and Ni is investigated by a cluster theory with two novel fea-
tures: (i) The coupling of magnetic moments formed by clusters (described by a local
band theory) is determined, thus incorporating short-range order as well as collective
modes. (ii) The clusters are coupled by source and sink terms describing transport
processes. The results indicate that Fe is closer to a local moment system, whereas
Ni seems to be a prototype for a local band theory.

PACS numbers: 75.50.Bb, 75.40.Fa

The existence of spin waves above T, in Fe
and Ni,'~% suggesting a physical model that is
neither strictly localized nor fully itinerant, led
to the development of the local band theory.*~”
The basic idea of this theory is the assumption
of a magnetically correlated region that is large
enough to define ferromagnetic bands. This is
equivalent to dividing the degrees of freedom into
two groups: (i) The degrees of freedom pertain-
ing to the local band, i.e., one-particle excita-
tions and random-phase-approximation (RPA)
spin waves.? (ii) The degrees of freedom corre-
sponding to long-wavelength excitations formed
by the slow change of the direction of the local
magnetization from site to site.

In principle one would like to solve the equations
for these two sets of degrees of freedom and
their mutual interaction self -consistently. This
problem has not yet been solved. Korenman and
Prange in their first three papers,* as well as in
a more recent paper on photoemission,® calcu-
lated the renormalization of the local bands
(assumed to be of Stoner form) and of the spin-
wave stiffness due to the long-wavelength excita-
tions [described by Korenman and Prange® by the
spectral function D(k, w)]. But they did not—nor
did anyone else—determine the dynamics of the
second set of degrees of freedom; i.e., the spec-
tral function D(k, w) remained undetermined so
that no thermodynamic quantities like T, could be
determined. All previous thermodynamic calcu-
lations (IV and V of Refs. 4-6 and 10-12) are
based on effective Heisenberg systems with
atomic local moments. In the following I treat
~ the ferromagnetic metal as an assemblage of
clusters or extended local moments whose coup-
ling is determined. This has never been calcu-
lated before. An extended moment also guaran-
tees that the energy of the coupling between the
moments is much smaller than the energy re-
quired to form the moment in the first place

(otherwise the notion of a moment of fixed mag-
nitude does not make sense).
In implementing this idea the Hubbard model
gerved as a starting point:
H= 7 t,¢0"

Z cjo"’UZ)"H”H-
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Here the sites {i} form a lattice, o takes two
values [down (¥) or up (4)], the ¢#;;, which form
the hopping matrix, are usually taken as a con-
stant £ when 7 and j are nearest neighbors and
zero otherwise, ch and c;, are creation and
annihilation operators of a local state at the site
i with spin 0, and #;,=c,;, c;,. In the next step
one restricts this Hamiltonian to a cluster:

cl cl bd
1_ \ T T
H = Ztcic cjo"'UEnH”H"'tECia Cioe
ijo i ijo

In this equation “cl” denotes a sum extended only
over lattice sites within the cluster, whereas
“pd” denotes a sum over lattice sites 7 and j
where only one of these sites is situated within
the cluster. The first two terms describe the
local band. I assume here, as Korenman and
Prange* did, that they can be approximated by
Stonerlike ferromagnetic bands which we take
from experiments. This is of course only a
substitute for a detailed calculation which is in
progress. Thus we replace ) Cltciofcjo

+23 4, B Pko €po ra, Where €, is taken
to be a bulk ferromagnetic band (cf. later dis-
cussion) independent of 4, whereas the depen-
dence on Z is due to restricting the values of the
momentum components k; to multiples of 27/Ak,
where A is the distance to the nearest neighbor
and %2 is the number of atoms in the (cubic)
cluster. The last term describes the interaction
of the cluster with its environment. In contrast
to usual cluster theories this interaction is not
a coupling by exchange fields. The potential
Un;yn;y is strictly local and does not couple dif-
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ferent lattice sites, The information transfer be-
tween the cluster and its environment is accom-
plished by the moving electrons. Therefore in-
stead of physical magnetic fields I introduce
source and sink terms describing the flow of
electrons into and out of the cluster. This meth-
od has already been used by Caron and Pratt'®
for a “cluster” consisting of one site only in
order to describe the metal-insulator transition,
Introducing source and sink terms means re-
placing those creation and annihilation operators
referring to lattice sites outside the cluster by
expectation values y;,={c,,) and v;,,={c;,").
The cluster Hamiltonian then has the following
form:

HY =2 (€r0 = B)Mpo + 25 (Vo Cch +¥ o C ro) ,
kO kO

bd
Yro =E Yio eXp(ikR i)/hslz ,
i

where R; is the position of the lattice site 7.
Here the chemical potential u had to be intro-
duced because the Hamiltonian no longer con-
serves particle number.

For a magnetically homogeneous system one
can derive a self-consistent equation in a way
that is similar to the usual cluster theories. In
principle one could calculate y;,={c; o)y =/{¥g)
and solve for the y,, (the {c;,) are #0 because
the Hamiltonian does not conserve particle num-
ber). But as we shall see it is easier to make
use of translational invariance. These expecta-
tion values are related to the first-order per-
turbation term in a perturbation expansion around
the atomic or local limit of the Hubbard model:

H=H,+V,

HO=UEnian’ V=EtCiGTCjO,
i

ijo
In the half-filled band case the ground state of H,
contains one particle per atom. Hence it is non-
degenerate and there is no first-order term. The
second-order term describes antiferromagnetical -
ly coupled atoms, i.e., atoms coupled by an ef- |

fective exchange field with a coupling constant
J~t?/U, where this coupling is entirely due to
virtual transitions, A corresponding effective
Hamiltonian'*!® obtained by a sort of Schrieffer-
Wolff technique' does not contain any mixing
terms c“,chg. The general case (n+1) is quite
different: The ground state is macroscopically
degenerate and perturbation theory is not possi-
ble with (antisymmetrized) product states of the
form JJ; [ ¢;) (i denoting lattice sites and ¢,
solutions of Un;yn;il ¢;)=E|¢,)) because of
vanishing energy denominators. This means zero-
energy excitations are possible: Namely elec-
trons may hop from site to site (actually it is a
somewhat restricted hopping'®) without violating
energy conservation, i.e., these are 7eal transi-
tions and constitute an electron curvent or trans-
port. To describe this it would be necessary to
change to new basis functions that are superposi-
tions of different atoms to eliminate any coupling
by V between states of the same energy. Then
the first-order term will contribute, as a result
of these real transitions between different atoms.
These real transitions or currents are partially
taken into account in the above approximation by
describing the current between clusters by source
and sink terms. There is an additional problem:
In the original Hamiltonian the terms c,, Te jo and
c,-,och:o commute for different boundary lattice
sites, i.e., the electrons leave and join the clus-
ter independently, After the approximation the
Yio 8 are numbers instead of fermion operators,
destroying this independence. The expression
2P (YioCio +¥:i0C ;o) can be rewritten as N(c o '
+Cy,), Where the ¢, denote a fermion operator
with N=37,1y;,1% ¢yo=N"M7,,c;, describing
electrons leaving or joining the cluster coherent-
ly.'" This is due to the fixing of the phases of
the y;, by taking expectation values and is simi-
lar to broken gauge invariance in superfluidity
(e.g., Ref. 18). The remedy consists of two
steps: averaging over the phases y¥; in y;,
=y, exp(iy;) and restoring the correct commuta-
tion rules. This is most easily done in the &
representation:

bd bd
(Urrol 2 =v4* 23 (exp(iy ;) exp(ikR ;) exp(-ikR ) exp(=iy ;) /h* =y 2 (explie; —iw,)) /h®

bd
=vo" 2 1/h*=y/h.
3

This averaging leads to the following cluster Hamiltonian:

HC1=E(Ekc - WMo+ yo(ck0T+ck0)/\/;z—=2Hk .
kO )

kO
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Restoring correct commutation rules means all
H, can be diagonalized separately. The Hamilton-
ian can now be solved with the result

Ekozé(eko - U-) —%[(ekc - Il)z +702/h]1/2.

Here I always chose the solution which corre-

il

t<ciocho +cjoTCia>: <7iocjo+')_/io cjoT>=2702/t

sponds to €,, for €,,< u and O for €,,> u in the
limit 7, = 0. The self-consistency equation de-
termining the y/s was derived by assuming that
the current somewhere within the cluster should
be equal to the corresponding current at the
boundary in the homogeneous case:

= |yo|2=5tHcot e 0+ 0 TCia)=St2N" Y exp(ikR; =ik’ R;){Cho Cpro ) +H.c.
Rk’

= 2N et p, o +Hie. = 12N cos(RA)n,, .
k

k

Determination of the effective exchange between
clusters can be done in a way similar to Hub-
bard’s'® approach to local moment systems. He
determined the potential energy for a static con-
figuration of two local neighboring moments as a
function of the angle ¢ these moments form in
spin space. The difference in potential energy
then is matched against the potential energy of a
classical Heisenberg model (with continuous val-
ues for ¢) with the result AE(¢)=E(¢) - E(0)
=JS2sin?@/2 (J denotes the Heisenberg coupling
constant and S denotes spin). This method is
much more justified here than it is in Hubbard’s
original work: Because we are concerned with
clusters we deal with long-wave or low-energy
excitations that are slow enough to consider ¢ a
static or fixed parameter and because of the large
S of the cluster we can safely assume that the
spins behdve classically. Once given JS? one can
determine 2T, because accurate JS?/kT, values
for the Heisenberg model in the classical limit
S - are known.'® What remains is to determine

E(‘V) ZZk>Eko
=3 { A€o = 1) = 2 (€20 = W2 +¥o2(@) /R Y2},

Since we already know the y,(¢ =0) we only need
to determine y,(¢ #0) from y,(¢ =0). Because the
physically relevant ¢ are quite small and the
cluster is meant to be large enough to make the
boundary or y terms small, I neglect their in-
fluence on the self-consistency equation deter-
mining y,(0). (I at first incorporated them only
to find out that programs become much more
complicated with only small effects as to the re-
sults.) Therefore the only change in the y,/’s is
due to the rotation of the orientation of the mag-
netic moments of neighboring clusters. I as-
sume that the magnetization of the cluster is con-
sidered to be the z axis whereas the axis of the

neighboring cluster shall be rotated around the y
axis by an angle ¢. Because the y,'s represent
the influence of the neighboring cluster they are
subject to a transformation in spin space. Insert-
ing

¢t =cos(@/2)c* = osin(¢/2)c. "

into the self-consistency equation and omitting
spin-flip terms one has

[yo(@)12=cos(¢/2) |yl 2 +8in*(¢/2) | y-ol2.

The coupling energy E(¢) can now be determined;
the value fits a sin?¢/2 curve reasonably well,
and so it is possible to determine the parameter
ISP,

For simplicity I assumed the five d subbands of
Fe or the three ¢,, subbands of Ni to be inde-
pendent degrees of freedom, each absorbing the
thermal energy 27. The subbands (denoted by
€,0) were calculated in the tight-binding approxi-
mation and fitted to a bandwidth of 3.4 eV (Ni) and
6 eV (Fe) and an exchange splitting of 0.31 eV
(Ni) and 1.5 eV (Fe). u was determined by using
occupation numbers »=1.8 (Ni) and 1.4 (Fe) by
integration over the tight-binding density of states
in Jelitto’s? approximation. Although these as-
sumptions seem to be very simplistic, calcula-
tions showed that there is not much change in the
results when one arbitrarily alters the band
shapes, but that the results are quite sensitive
to the occupation number n. This is due to the
fact that y,(0) depends essentially on # (y,=0
for n=0,1 and is large in between). This result
is in accord with a recent paper? where it is
shown by application of Fulde’s local approach
to correlation that the magnitude and stability of
a local moment in the (hypothetical) paramagnetic
phase of transition metals is essentially deter-
mined by the band occupation only. Because, as
was already said, the calculation of the exchange
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forces within the cluster establishing the local
exchange splitting is not yet ready, the length of
the cluster cannot be determined and must be
treated as a parameter.

The results for 2T, (in electronvolts) are the
following:

Ni Fe
h=3 0.0481 1.0280
h=4 0.0547 1.7880
h=5 0.1406 3.2128
h=6 0.4130 4.3325

The experimental values are kT, =0.054 eV (Ni)
and 2T, =0.090 eV (Fe). The results show that
the ferromagnetic transition in Ni can be under-
stood by the cluster method presented here and
by the local band theory which differs only slight-
ly in the prediction of the cluster length for Ni
(local band theory, #=5; this work, % =4). For
larger cluster dimensions the calculated Curie
temperature increases because the cluster is
assumed to be rigid whereas actually there are
thermal excitations of shorter wavelength. It
may also be seen that the Curie temperature of
Fe is always too high, indicating that the excita-
tion driving the phase transition may be more
localized than can be accounted for in a local
band theory. This is in accord with general
opinion and can be seen in, e.g., the Rhodes-
Wohlfarth plot® and the fact that Hubbard’s'® re-
cent work which is based on a localized model
works much better for Fe than for Ni.

A calculation applying these ideas to the photo-
emission line shape of Ni, measured with un-
precedented resolution by Maetz and Gerhardt,*
is in progress.

I want to express my gratitude to Professor
R. J. Jelitto who provided the opportunity to per-
form this work which actually is an abbreviated
version of my thesis done under his supervision.
This work is a project of the Sonderforschungs-
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